Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
BKh-ekzamen_II.docx
Скачиваний:
49
Добавлен:
27.01.2020
Размер:
351.24 Кб
Скачать

В этом документе представлены страницы с книги Гонского + информация с других книг

II РАЗДЕЛ

«МЕТАБОЛИЗМ РАЗЛИЧНЫХ КЛАССОВ БИООРГАНИЧЕСКИХ ВЕЩЕСТВ: БЕЛКОВ, ЖИРОВ, УГЛЕВОДОВ, НУКЛЕИНОВЫХ КИСЛОТ»

1. с.1-15,35-44

2. с.16-20

Спектроскопические методы

В большинстве этих методов измеряют зависимость интенсивности излучения I, прошедшего через вещество или рассеянное веществом, от частоты n, то есть определяют функцию I(n). В настоящее время диапазон частот распространяется на значения от минимальных n ї 106 Гц в ядерном магнитном резонансе (ЯМР) до 1019 Гц (гамма-излучение). Частоты n и длины волн l излучения связаны простым соотношением с = ln, с - скорость света в вакууме. Для указанного диапазона частот длины волн изменяются от l - 200 м до 10 - 14 м. Столь значительный диапазон частот (длин волн) требует различных источников излучения и выявляет различные физические свойства вещества. Наблюдаемые частоты соответствуют разностям энергий Е двух состояний молекул:

n1, 2 = (E2 - E1)/ h,

где h - постоянная Планка. Переходами между уровнями энергии E1 и E2 «управляют» правила отбора. Это означает, что не все переходы возможны. Из таблицы видно, что разница, например, между двумя уровнями энергии валентных электронов (УФ-спектры - ультрафиолетовые спектры) DЕ (УФ) = E2 - E1 значительно больше, чем DЕ (ЯМР).

Для химии важны не только абсолютные разницы DЕ, но их изменения в различных соединениях, вызванных изменениями в составе или под влиянием ближайшего окружения.

Наибольшее распространение для идентификации веществ получили колебательные и электронные спектры, а также спектры ядерного магнитного резонанса.

В колебательной спектроскопии важно иметь полный интервал частот от очень низких (порядка 10 см - 1), характерных для крутильных колебаний, до высоких значений (порядка 5000 см - 1). Частоты колебательных спектров используются также для расчета силовых полей молекул, то есть для определения различного типа сил взаимодействия атомов в молекуле. Так называемые силовые постоянные для значительного числа групп атомов обладают свойством переносимости, то есть постоянством в рядах сходных по строению молекул.

Электронная спектроскопия является очень чувствительным и удобным методом для определения спектров поглощения, пропускания и отражения, изучения кинетики реакции, сопровождающихся спектральными изменениями. В обычных условиях спектры имеют диффузный характер, что ограничивает их применение веществами, имеющими хромофорные группы (ароматические циклы, кратные связи и т.п.). Эти спектры позволяют устанавливать наличие тех или иных групп в молекуле, то есть осуществлять групповой анализ, изучать влияние заместителей на электронные спектры и строение молекул, исследовать таутомерию и другие превращения.

Метод ядерного магнитного резонанса (ЯМР) основан на взаимодействии внешнего магнитного поля с ядрами, имеющими магнитный момент, такими как 1H, 13C, 15N, 19F, 29Si, 31P, для которых спиновое квантовое число равно 1/2, а также для ряда ядер со спиновым квантовым числом, большим 1/2. Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества, например тетраметилсилана, позволяет определить так называемый химический сдвиг, который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения и т.п.

Дифракционные методы

В дифракционных методах используются волновые свойства излучения и потока частиц электронов и нейтронов. Волновые свойства рентгеновских лучей были открыты в 1912 году немецким физиком Лауэ. Он заложил основы рентгеноструктурного анализа. Гипотеза о волновых свойствах частиц выдвинута французским физиком Луи де Бройлем в 1924 году. Эта гипотеза выражена простым соотношением между длиной волны l, массой m и скоростью u движущейся частицы:

В 1927 году экспериментально подтверждено явление дифракции электронов. Позднее открыта дифракция нейтронов.

В дифракционных методах измеряют зависимость интенсивности рассеянного излучения от угла рассеяния q, то есть функцию I(q). При этом длина волны после рассеяния не изменяется. Имеет место так называемое упругое рассеяние.

Рентгеновские лучи, получаемые в рентгеновских трубках, имеют длины волн порядка 0,07 - 0,2 нм. Длины волн электронных пучков составляют величины порядка 0,005 нм. В нейтронографии потоки нейтронов характеризуются длинами волн порядка 0,15 нм. Существенным ограничением использования нейтронов является то, что их источник связан с ядерным реактором.

Хотя эти три типа падающего излучения удовлетворяют основному соотношению дифракции, они используются несколько по-разному. Последнее объясняется различным характером взаимодействий рентгеновских лучей, электронов и нейтронов с веществом. Наиболее сильно рассеиваются электроны. Слабее всего рассеиваются нейтроны.

Поэтому рентгенография и нейтронография используются для исследований кристаллов и другой конденсированной фазы в макроскопических размерах. Электронография применяется для изучения тонких пленок, поверхностей и газов.

Наиболее широкое применение в химии нашли два метода:

1. Рентгеноструктурный анализ, который позволяет определять координаты атомов в трехмерном пространстве кристаллических веществ от простейших соединений типа NaCl до сложных белков.

2. Газовая электронография, с помощью которой определяют геометрию свободных молекул в газах, то есть молекул, не подверженных влиянию соседних молекул, как это имеет место в кристаллах.

Сопоставление данных обоих методов для одних и тех же веществ дает возможность оценить влияние кристаллического поля на молекулу.

Оптические методы

Оптическими методами изучают распространение, рассеяние и поглощение света в веществе. Физические величины, которые измеряют, представляют следующий ряд:

1) n - показатель преломления: n = c/u, где с - скорость света в вакууме, u - скорость света в веществе;

2) a - угол поворота плоскости поляризации линейно поляризованного света при прохождении через оптически активное вещество, которое вращает плоскость поляризации падающего линейно поляризованного света;

3) r - коэффициент деполяризации, то есть отношение интенсивности рассеянного под углом 900 света с поляризацией, перпендикулярной плоскости падающего линейно поляризованного света I^, к интенсивности рассеянного света с параллельной поляризацией I||, то есть r = I^ / I||.

4) - эффект Керра, где n|| и n^ - показатели преломления для линейно поляризованных лучей, распространяющихся вдоль электрического поля E|| и перпендикулярно этому полю соответственно;

5) a(В ) - эффект Фарадея, где a(В ) - зависимость угла поворота плоскости поляризации света от величины магнитного поля В;

6) e(l) - молярный коэффициент поглощения света как функция l и др.; этот параметр определяется также в спектроскопических методах.

Результаты оптических методов используются для идентификации веществ, выявления взаимного влияния атомов в молекуле, расчета поляризуемости молекул, отнесения частот в колебательном анализе, изучения влияния растворителя на исследуемую систему и т.д.

Масс-спектрометрия и спектроскопия электронов

Эта группа методов отличается от предыдущих тем, что в результате взаимодействия какого-либо падающего излучения или потока частиц на вещество измеряются потоки других частиц.

Методом масс-спектрометрии определяют молекулярные массы, идентифицируют вещества, устанавливают химическое строение веществ, изучают теплоты испарения и реакций, механизмы химических реакций, измеряют потенциалы ионизации и энергии разрыва химических связей.

В методах рентгеновской электронной спектроскопии (РЭС) и оптической электронной спектроскопии (фотоэлектронной спектроскопии, ФЭС) падающим излучением I0 является рентгеновское или ультрафиолетовое излучение. Однако в отличие от масс-спектрометрии измеряют энергии потока электронов, вырванных из молекулы или вещества, то есть измеряют I(Eэл).

Рентгеновское излучение вырывает электроны из внутренних оболочек атомов веществ. Поэтому метод РЭС позволяет определять энергию связи внутренних электронов остовов атомов в молекуле и веществе. Методом ФЭС определяют последовательные потенциалы ионизации из валентной оболочки атомов в молекуле. Оба эти метода дают возможность идентифицировать вещества и изучать закономерности влияния атомов ближайшего окружения на энергию связи электронов в атомах на разных орбиталях.

Диэлькометрия и магнетохимия

В зависимости от величин электрических дипольных моментов или магнитных характеристик веществ внешние электрическое и соответственно магнитное поля изменяют поведение вещества в этих полях по сравнению с поведением в отсутствие поля.

Измерения диэлектрической проницаемости e позволяют определить величину электрического дипольного момента m, который характеризует полярность молекул. Кроме того, величина m является источником структурной информации при использовании аддитивных расчетных схем.

Магнетохимические исследования дают возможность оценивать по степени парамагнетизма число неспаренных электронов в атомах вещества (парамагнитные вещества втягиваются в магнитное поле). Диамагнетики выталкиваются магнитным полем и степень этого выталкивания обусловлена электронным строением молекул и вещества. Особенно показательно различие молярных диамагнитных восприимчивостей cd, параллельных и перпендикулярных плоскости молекул бензола, нафталина и других ароматических углеводородов. Это доказывает существование электронных токов в плоскостях ароматических молекул.

3.с.23-35

4.с.45-62

5. с.17-19

Хроматографический метод определения аминокислот

ХРОМАТОГРАФИЯ - метод разделения, анализа и физико-химического исследования веществ. Хроматография обычно основана на распределении исследуемого вещества между двумя фазами - неподвижной и подвижной (элюент).

Неподвижная (стационарная) фаза – представляет собой сорбент с развитой поверхностью, а подвижная (мобильная) фаза - поток газа (пара, флюида - вещество в сверхкритичном состоянии) или жидкости. Поток подвижной фазы фильтруется через слой сорбента или перемещается вдоль слоя сорбента.

Хроматография - процесс разделения веществ, находящихся в смеси или растворе, на составляющие компоненты в системе двух фаз, одна из которых неподвижна, а другая перемещается относительно первой. Перемещение способствует миграции веществ, при этом неподвижная фаза не изменяется, а каждый компонент движется независимо от других с собственной скоростью.

Хроматографические методы применяют для сорбционно-динамического разделения смеси аминокислот, белков, углеводов, липидов и их метаболитов.

В зависимости от природы адсорбента и механизма разделения веществ хроматографию подразделяют на несколько видов:

1. Адсорбционная – основана на различной способности отдельных компонентов смеси (в силу их различной полярности) адсорбироваться на поверхности твёрдой фазы сорбента. Этот метод предложен М. С. Цветом в 1903 году. В качестве сорбентов используются активированный древесный уголь, окись алюминия или кремния.

2. Распределительная – основана на различной растворимости разделяемых веществ в двух малосмешивающихся жидкостях; в отличие от адсорбционной, твердая фаза служит опорой (основой) для стационарной (неподвижной) фазы. Разновидностью распределительной хроматографии является хроматография на бумаге, широко используемая в биохимических и клинических лабораториях для разделения белков, пептидов, аминокислот и других веществ.

3. Ионообменная – основана на различной способности разделяемых веществ к обмену их ионов на ионы неподвижной фазы сорбента. В качестве неподвижной фазы сорбента применяются ионообменные смолы – полимерные органические соединения, содержащие функциональные группы, способные вовлекаться в ионный обмен. Различают анионообменники, представленные органическими основаниями и аминами, и катионообменники, содержащие фенольные, сульфо- или карбоксильные группы. В зависимости от заряда разделяемых белков используют подходящую ионообменную смолу, с функциональными группами которой обменивается часть белков и задерживается на колонке, в то время как другие белки беспрепятственно выносятся из колонки. «Осажденные» на колонке белки снимают с колонки применением более концентрированных солевых растворов или изменением рН элюента.

4. Осадочная – основана на образовании труднорастворимых осадков в определённой последовательности.

5. Диффузионная – основана на разделении веществ по скорости диффузии внутрь сорбента в зависимости от размера молекул. К данному типу относится гель-фильтрация - разделение веществ, основанное на механическом явлении молекулярных сит (просеивания). Этот метод широко используется при очистке белков от примесей и для фракционирования белков плазмы.

6. Аффинная (хроматография сродства) – основана на принципе избирательного взаимодействия белков (или других макромолекул) со специфическими веществами – лигандами, закрепленными на носителе. Благодаря высокой специфичности сродства белков к определенному лиганду, связанному с носителем (которым заполняют хроматографическую колонку) присоединяется только один какой-нибудь белок из смеси. Затем этот белок снимают с колонки элюированием буферными смесями с измененным рН или иной ионной силой, а также введением в состав элюента детергентов, ослабляющих связи между белками и лигандами. Достоинством этого метода является то, что с его помощью удается выделить одноэтапно заданный белок или другой биополимер высокой степени чистоты. При помощи аффинной хроматографии, например, определяют гликозилированный гемоглобин, являющийся наиболее достоверным показателем гликемии.

По технике выполнения хроматографические методы исследования подразделяют на колоночную и плоскостную (на бумаге или в тонком слое).

В зависимости от агрегатного состояния фаз хроматографию подразделяют на газовую, жидкостную,газожидкостную.

По направлению движения растворителя (подвижной фазы) хроматографию подразделяют на восходящую,нисходящую, одномерную, двухмерную и радиальную.

6.

Денатурация и ренатурация белков

Внешние факторы (изменение температуры, солевого состава среды, рН, радиация) могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией(рис. 260). Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Причем первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Вместе с тем, денатурация не сопровождается разрушением полипептидной цепи. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций.

Рис. 260. Денатурация и ренатурация белка:

1 — молекула белка третичной структуры; 2 — денатурированный белок; 3 — восстановление третичной структуры в процессе ренатурации.

Денатурация может быть:

Обратимой, если возможно восстановление свойственной белку структуры. Такой денатурации подвергаются, например, рецепторные белки мембраны.

Необратимой, если восстановление пространственной конфигурации белка невозможно. Обычно это происходит при разрыве большого количества связей, например, при варке яиц.

Если белок подвергся обратимой денатурации, то при восстановлении нормальных условий среды он способен полностью восстановить свою структуру и, соответственно, свои свойства и функции. Процесс восстановления структуры белка после денатурации называется ренатурацией.

Функции белков

Благодаря сложности, разнообразию форм и состава, белки играют важную роль в жизнедеятельности клетки и организма в целом. Функции их разнообразны.

Строительная (структурная) функция

Одна из важнейших — строительная. Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран, шерсти, волос, сухожилий, стенок сосудов и т.д.

Транспортная функция

Некоторые белки способны присоединять различные вещества и переносить их к различным тканям и органам тела, из одного места клетки в другое. Например, белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.

Регуляторная функция

Большая группа белков организма принимает участие в регуляции процессов обмена веществ. Такими белками являются гормоны — биологически активные вещества, выделяющиеся в кровь железами внутренней секреции. Они влияют на активность ферментов, тем самым, замедляя или ускоряя обменные процессы, изменяют проницаемость клеточных мембран, поддерживают постоянство концентрации веществ в крови и клетках, участвуют в процессах роста, размножения и т.д. Например, гормон инсулин регулирует уровень сахара в крови путем повышения проницаемости клеточных мембран для глюкозы, способствует синтезу гликогена, увеличивает образование жиров из углеводов.

Защитная функция

В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Синтез этих белков, называемых иммуноглобулинами, происходит в лимфоцитах. Причем, практически на любой антиген, с которым клетка и организм никогда не встречались, лимфоциты способны синтезировать антитела. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.

Двигательная функция

Особые сократительные белки участвуют во всех видах движения клетки и организма: образовании псевдоподий, мерцании ресничек и биении жгутиков у простейших, сокращении мышц у многоклеточных животных, движении листьев у растений и др.

Сигнальная функция

Весьма важна для жизни клетки сигнальная функция белков. В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды. Так происходит прием сигналов из внешней среды и передача команд в клетку.

Запасающая функция

Благодаря белкам в организме могут откладываться про запас некоторые вещества. Например, при распаде гемоглобина железо не выводится из организма, а сохраняется в селезенке, образуя комплекс с белком ферритином. К запасным белкам относятся белки яйца, белки молока.

Энергетическая функция

Белки являются одним из источников энергии в клетке. При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются тогда, когда другие (углеводы и жиры) израсходованы.

Каталитическая функция

Одна из важнейших функций белков. В состав клеток входит большое количество веществ, химически мало активных. Тем не менее, все биохимические реакции протекают с огромной скоростью, благодаря участию в них биокатализаторов— ферментов — веществ белковой природы.

Общая характеристика ферментов

Как отмечалось ранее, большинство химических реакций в организме протекает с участием катализаторов — ферментов. Ферменты7— специфические белки, присутствующие во всех живых клетках и играющие роль биологических катализаторов.

Сходство ферментов и неорганических катализаторов заключается в том, что они:

снижают энергию активации8;

не изменяют направления реакции, а лишь изменяют скорость ее протекания;

в катализируемой реакции всегда затрачивается меньше энергии, чем в некатализируемой.

Но, поскольку ферменты являются белками, это придает им особые свойства:

если неорганический катализатор может использоваться в разных типах реакций, то ферменты катализируют только одну реакцию или один вид реакции;

большинство неорганических катализаторов ускоряют химические реакции при очень высоких температурах, имеют максимальную эффективность в сильнокислой или сильнощелочной среде, при высоких давлениях, а большинство ферментов активны при температурах 35-45˚С, физиологических значениях кислотности раствора и при нормальном атмосферном давлении;

скорость ферментативных реакций в десятки тысяч (а иногда и в миллионы раз) выше скорости реакций, идущих с участием неорганических катализаторов. Например, пероксид водорода без катализаторов разлагается медленно: 2Н202 →2Н20 + 02. В присутствии солей железа (катализатора) эта реакция идет несколько быстрее. Ферменткаталазаза1сек. расщепляет 100 тыс. молекул Н202.

Известно более 2000 различных ферментов, представленных белками с высокой молекулярной массой, например каталаза (М=252000).

7. с.397-398

Болезни недостаточности и избыточности белкового питания и белкового метаболизма

Белковая недостаточность обычно связана с общим недоеданием (голодом) и чаще всего наблюдается у жителей беднейших и развивающихся стран. Она почти всегда сочетается с дефицитом энергии, поэтому данный алиментарный дисбаланс называетсябелково-энергетической недостаточностью(наблюдается недостаток продуктов главным образом животной группы). У новорожденных и детей младшего возраста белково-энергетическая недостаточность проявляется в формеквашиоркораиалиментарного маразма– заболеваний, встречающихся в беднейших странах.

Алиментарная дистрофия может развиться у взрослого человека при длительном (несколько месяцев) существенном дефиците питания. Ее проявления: снижение массы тела (истощение), потеря работоспособности, глубокие гиповитаминозы, снижение иммунитета. Развитие подобного состояния возможно также при нарушении обменных процессов при тяжелых заболеваниях или отказе от питания по разным причинам (медицинским и социальным).

Избыток белков в питании имеет наиболее выраженные и относительно быстро проявляющиеся последствия по сравнению с избытком других макронутриентов. Собенно чувствительны к избытку протеина крайние возрастные группы (дети и престарелые), а также лица с некоторыми заболеваниями, в частности, почек и печени, так как в первую очередь страдают именно эти органы. В печени возможно развитие жировой дистрофии и деструктивных процессов из-за перегрузки ее пищевыми аминокислотами. Почки функционально перегружаются из-за повышенного выделения остаточного азота (мочевина, мочевая кислота, креатинин) и нарушения кислотно-щелочного баланса первичной мочи В результате увеличиваются потери кальция с мочой: каждый грамм лишнего белка приводит к потере 2020 мг кальция. При длительном избытке белка в рационе увеличивается риск развития мочекаменной болезни, подагры, ожирения. Ожирение связано с тем, что излишнее количество белка вовлекается в липонеогенез. Очень вероятно также развитие относительного гиповитаминоза В6, РР и А из-за их повышенного расхода в метаболизме белков или нарушения их обмена.

С белковой составляющей связан и ряд наследственных заболеваний, таких как фенилкетонурия, гистидинемия, гомоцистеинурия, алкаптонурия и целиакия: это генетически детерминированные энзимопатии.

8.с.45-46

9. с.66-69

Соседние файлы в предмете Биохимия