Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
48-65.docx
Скачиваний:
42
Добавлен:
12.03.2015
Размер:
61.54 Кб
Скачать

57.Принцип действия поплавкового показателя уровня.

Рис. 96. Схема поплавкового уровнемера.

Поплавковые уровнемеры (рис. 96) применяются в основном для непрерывного измерения уровня жидкости, когда положение поплавка, выступающего в роли чувствительного элемента и помещенного в жидкость, вызывает изменение какого-либо параметра преобразующего элемента. Принцип действия поплавкового уровнемера основан на следящем действии поплавка, находящегося на поверхности жидкости и перемещающегося вместе с уровнем жидкости. С поплавком 1 с помощью троса 2 соединен указатель вместе с противовесом 4, обеспечивающим натяжение троса. Когда уровень жидкости повышается, поплавок перемещается вверх, противовес с указателем движутся вниз вдоль шкалы 3. В большинстве случаев перемещение поплавка, вызванное изменением уровня жидкости, передается на плунжер соленоидного дифференциально-трансформаторного (индуктивного) датчика (рис. 5.97). Уровнемеры с индуктивными датчиками применяются для измерения уровня жидкости в резервуарах высокого давления.

58. Принцип действия гидростатического уровнемера.

Гидростатические уровнемеры. Измерение уровня основано на измерении оказываемого жидкостью на дно резервуара гидростатического давления, которое измеряется в открытых резервуарах при помощи обычного или дифференциального манометра. В резервуарах, находящихся под давлением и, следовательно, представляющих собой замкнутую емкость, уровень жидкости можно измерить только дифференциальным манометром

Величина гидростатического давления на дно резервуара зависит от высоты h столба жидкости над измерительным прибором и от плотности р жидкости. Таким образом, справедливо уравнение:

или

Если манометр установить не на одинаковой с днищем резервуара высоте, то произойдет смещение точки начала измерения, пропорциональное разности высот. При использовании дифференциальных манометров место установки измерительного прибора не влияет на правильность индикации, если оно находится ниже уровня днища резервуара, а измерение давления осуществляется относительно давления постоянного уровня жидкости.

Гидростатический метод можно использовать, в частности, для измерения уровня в резервуарах высокого давления.

59. Ультразвуковые уровнемеры

Ультразвук можно использовать для измерения уровня как жидкостей, так и сыпучих материалов. Способ непригоден лишь для измерения уровня жидкости, содержащей твердые частицы, которые могут образовать отложения на вибраторах и тем самым привести к погрешностям измерения. Такие химические и физические свойства жидкости, как агрессивность, плотность и вязкость, играют при этом второстепенную роль. Ультразвуковой метод измерения уровня позволяет осуществлять сигнализацию уровня сыпучих материалов, а также легких хлопьевидных и содержащих воздух материалов, например, целлюлозы, мелкозернистых или порошкообразных синтетических материалов.

Для измерения уровня при помощи ультразвука необходимо наличие излучателя и приемника. Излучатель посылает ультразвуковые импульсы, представляющие собой механические колебания в диапазоне частот от 20 кГц до нескольких мегагерц. Чем выше частота, тем прямолинейнее распространяются ультразвуковые колебания, поведение которых напоминает поведение световых лучей. В связи с этим к ним применим известный из оптики закон отражения и преломления.

Уровнемер состоит из пьезоэлектрического преобразователя (вибратора) 2, установленного в резервуаре 1, электронного блока 3 и вторичного измерительного прибора 8 (на рисунке — автоматический потенциометр). Электронный блок включает в себя генератор 7, задающий частоту повторения импульсов; генератор импульсов 4, посылаемых в жидкость, уровень которой измеряется; приемного устройства-усилителя 5; измерителя времени 6. Генератор 7, задающий частоту повторения импульсов, управляет работой генератора импульсов 4 и измерителем времени 6. Генератор импульсов 4 вырабатывает электрические импульсы с определенной частотой повторения, которые преобразуются в ультразвуковые с помощью пьезоэлектрического преобразователя 2, установленного с внешней стороны дна резервуара.

60. Принцип действия радарных уровнемеров. Их разновидности

Принцип действия всех известных радарных уровнемеров основан на измерении времени распространения радиоволны от антенны уровнемера до поверхности продукта, уровень которого измеряется, и обратно. Наиболее простым с точки зрения реализации на первый взгляд выглядит импульсный метод, заключающийся в измерении времени запаздывания принятого импульса относительно излученного. Однако при ближайшем рассмотрении очевидны технические трудности реализации этого метода.

Во-первых, излучаемый импульс должен быть достаточно коротким, чтобы закончиться раньше, чем в антенну поступит отраженный импульс, т.е. иметь длительность в единицы наносекунд и менее, что реализовать не так просто. Во-вторых, излучаемый радиоимпульс должен иметь достаточно большую мощность, чтобы обеспечить требуемое соотношение сигнал-шум в принятом сигнале, а это накладывает серьезные требования к излучающему элементу, особенно при больших диапазонах измерения уровня и низких отражательных способностях продукта. В-третьих, задача высокоточного измерения наносекундных временных интервалов между излученным и принятым импульсом технически непроста в решении.

В силу перечисленных факторов, импульсные методы не нашли широкого распространения при решении задач по высокоточному измерению уровня и применяются лишь там, где отражательная способность продукта сравнительно высока и не требуется высокая точность. 

Более широкое распространение для высокоточных измерений получили радарные уровнемеры, использующие непрерывное модулированное по частоте радиоизлучение (FMCW). Принцип действия такого уровнемера заключается в следующем. Микроволновый генератор датчика уровня формирует радиосигнал, частота которого изменяется во времени по линейному закону – линейный частотно-модулированный сигнал. Этот сигнал излучается в направлении продукта, отражается от него, и часть сигнала через определенное время, зависящее от скорости света и расстояния, возвращается обратно в антенну. Излученный и отраженный сигналы смешиваются в датчике уровня, и в результате образуется сигнал, частота которого равна разности частот принятого и излученного сигналов F и соответственно расстоянию от антенны до измеряемого продукта. Дальнейшая обработка сигнала осуществляется микропроцессорной системой датчика уровня и заключается в точном определении частоты результирующего сигнала и пересчете ее значения в значение уровня наполнения резервуара.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]