Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Kolok_2_luchshe

.doc
Скачиваний:
25
Добавлен:
31.03.2015
Размер:
141.31 Кб
Скачать

Основные положения мутационной теории разработаны Гуго де Фризом в 1901—1903 гг. и сводятся к следующему:

Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков.

В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение.

Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными.

Вероятность обнаружения мутаций зависит от числа исследованных особей.

Сходные мутации могут возникать повторно.

Мутации ненаправленны (спонтанны), то есть мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма. По характеру изменения генома, то есть совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.

Генные мутации

Генные мутации затрагивают структуру самого гена и влекут за собой изменение свойств организма (гемофилия, дальтонизм, альбинизм, окраска венчиков цветков и т.д.). Генные мутации возникают как в соматических, так и в половых клетках. Они могут быть доминантными и рецессивными. Первые проявляются как у гомозигот так и у гетерозигот, вторые -- только у гомозигот. У растений возникшие соматические генные мутации сохраняются при вегетативном размножении. Мутации в половых клетках наследуются при семенном размножении растений и при половом размножении животных. Одни мутации оказывают на организм положительное действие, другие безразличны, а третьи вредны, вызывая либо гибель организма, либо ослабление его жизнеспособности (например, серповидноклеточная анемия, гемофилия у человека).При выведении новых сортов растений и штаммов микроорганизмов используют индуцированные мутации, искусственно вызываемые теми или иными мутагенными факторами (рентгеновские или ультрафиолетовые лучи, химические вещества). Затем проводят отбор полученных мутантов, сохраняя наиболее продуктивные. В нашей стране этими методами получено много хозяйственно перспективных сортов растений: неполегающие пшеницы с крупным колосом, устойчивые к заболеваниям; высокоурожайные томаты; хлопчатник с крупными коробочками и др.

Свойства мутаций.

1. Мутации возникают внезапно, скачкообразно.

2. Мутации наследственны, то есть стойко передаются из поколения в поколение.

3. Мутации ненаправленные - мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков.

4. Одни и те же мутации могут возникать повторно.

5. По своему проявлению мутации могут быть полезными и вредными, доминантными и рецессивными.

Способность к мутированию -- одно из свойств гена. Каждая отдельная мутация вызывается какой-то причиной, но в большинстве случаев эти причины неизвестны. Мутации связаны с изменениями во внешней среде. Это убедительно доказывается тем, что путем воздействия внешними факторами удается резко повысить их число.

Хромосомные мутации

Хромосомные мутации связаны с изменением структуры хромосом. Существуют следующие виды перестроек хромосом: отрыв различных участков хромосомы, удвоение отдельных фрагментов, поворот участка хромосомы на 180° или присоединение отдельного участка хромосомы к другой хромосоме. Подобное изменение влечет за собой нарушение функции генов в хромосоме и наследственных свойств организма, а иногда и его гибель.

Геномные мутации. Хромосомные болезни, механизмы возникновения и наиболее характерные клинические проявления.

Геномные: — полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосом) и анеуплоидия (гетероплоидия) — изменение числа хромосом, не кратное гаплоидному набору (см. Инге-Вечтомов, 1989). В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.

К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3—5 % из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мёртворождений.

Все хромосомные болезни принято делить на две группы: аномалии числа хромосом и нарушения структуры хромосом.

Аномалии числа хромосом

Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом

синдром Дауна — трисомия по 21 хромосоме, к признакам относятся: слабоумие, задержка роста, характерная внешность, изменения дерматоглифики;

синдром Патау — трисомия по 13 хромосоме, характеризуется множественными пороками развития, идиотией, часто — полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года;

синдром Эдвардса — трисомия по 18 хромосоме.

Болезни, связанные с нарушением числа половых хромосом

синдром Шерешевского-Тернера — отсутствие одной Х-хромосомы у женщин (45 ХО) вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость, половой инфантилизм и бесплодие, различные соматические нарушения (микрогнатия, короткая шея и др.);

полисомия по Х-хромосоме — включает трисомию (кариотии 47, XXX), тетрасомию (48, ХХХХ), пентасомию (49, ХХХХХ), отмечается незначительное снижение интеллекта, повышенная вероятность развития психозов и шизофрении с неблагоприятным типом течения;

полисомия по Y-хромосоме — как и полисомия по X-хромосоме, включает трисомию (кариотии 47, XYY), тетрасомию (48, ХYYY), пентасомию (49, ХYYYY), клинические проявления также схожи с полисомией X-хромосомы;

синдром Кляйнфельтера — полисомия по X- и Y-хромосомам у мальчиков (47, XXY; 48, XXYY и др.), признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.

Болезни, причиной которых является полиплоидия

триплоидии, тетраплоидии и т. д.; причина — нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного (23) диплоидный (46) набор хромосом, то есть 69 хромосом (у мужчин кариотип 69, XYY, у женщин — 69, XXX); почти всегда летальны до рождения.

Нарушения структуры хромосом

Транслокации — обменные перестройки между негомологичными хромосомами.

Делеции — потери участка хромосомы. Например, синдром «кошачьего крика» связан с делецией короткого плеча 5-ой хромосомы. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Наиболее типичным, помимо «кошачьего крика», является умственное и физическое недоразвитие, микроцефалия (аномально уменьшенная голова).

Инверсии — повороты участка хромосомы на 180 градусов.

Дупликации — удвоения участка хромосомы.

Изохромосомия — хромосомы с повторяющимся генетическим материалом в обоих плечах.

Возникновение кольцевых хромосом — соединение двух концевых делеций в обоих плечах хромосомы.

Спиноцеребеллярная атаксия — Некоторые типы этой болезни, обуславливается увеличением тринуклеотидных GAG повторов в генах, располагающихся в хромосомах.

Особенности человека как объекта генетических исследований. Методы генетики человека: генеалогический, цитогенетический, близнецовый, популяционно-статистический, биохимический. Методы генетики соматических клеток, молекулярно-генетические методы.

Основы генетики человека

Генетика человека изучает явления наследственности и изменчивости в популяциях людей, особенности наследования нормальных и патологических признаков, зависимость заболевания от генетической предрасположенности и факторов среды.

Задачей медицинской генетики является выявление и профилактика наследственных болезней.

Одним из основоположников медицинской генетики является выдающийся советский невролог С.Н. Давиденков (1880-1961), начинавший свою плодотворную работу в двадцатых годах на Украине. Он впервые применил идеи генетики в клинике, дал анализ ряда наследственных заболеваний, часть из которых была описана им впервые.

Важной заслугой С.Н. Давиденкова является разработка методов медико-генетического консультирования и его первое практическое применение в нашей стране.

Особенности генетики человека

Исследование генетики человека с большими трудностями, причины которых связаны:

•с невозможностью экспериментального скрещивания

•c медленной сменой поколений

•c малым количеством потомков в каждой семье

•c тем, что у человека сложный кариотип, большое число групп сцепления

Однако, несмотря на все эти затруднения, генетика человека успешно развивается. Невозможность экспериментального скрещивания компенсируется тем, что исследователь, наблюдая обширную человеческую популяцию, может брать из тысячи брачных пар те, которые необходимы для генетического анализа. Метод гибридизации соматических клеток позволяет экспериментально изучать локализацию генов в хромосомах, проводить анализ групп сцепления.

При изучении генетики человека используются следующие методы:

•генеалогический

•близнецовый

•популяционно-статистический

•дерматоглифический

•биохимический

•цитогенетический

•гибридизации соматических клеток

•моделирования

Цитогенетический метод изучения генетики человека. Денверская и Парижская номенклатура хромосом. Значение цитогенетического метода в диагностике хромосомных болезней.

Цитогенетический метод

Принципы цитогенетических исследований сформировались в течение 20-30-х годов на классическом объекте генетики – дрозофиле и на некоторых растениях. метод основан на микроскопическом исследовании хромосом.

Для идентификации хромосом применяют количественный морфометрический анализ. С этой целью проводят измерение длины хромосомы в микрометрах (микроскопия хромосом производится в остановленной фазе митоза посредством колхицина и отброшенными посредством гипотонического раствора в результате чего хромосомы лежат свободно), определяют также соотношение длины короткого плеча к длине всей хромосомы (центромерный индекс).

В 1960 году была разработана первая классификация хромосом человека (Денверская). в основу ее были положены особенности величины хромосом и расположение первичной перетяжки. По форме и общим размерам все аутосомы человека подразделяются на 7 групп, обозначаемых латинскими буквами: A, B, C, D, E, F, G. Все хромосомы имеют порядковые номера. Наиболее крупная пара гомологичных хромосом имеет №1, следующая - №2 и т.д. Половые хромосомы - крупная X и мелкаяY – выделяются отдельно. В последнее время разрабатываются автоматические системы для измерения и количественного анализа хромосом. Однако идентификация хромосом только по указанным признакам встречает большие затруднения.

В 1968-1970 гг. были опубликованы работы шведского генетика Касперссона, который применил для изучения хромосом флюоресцентные красители, в частности акрихин-иприт и его производные. Последующее изучение в люминесцентном микроскопе показало, что хромосомы не дают равномерного свечения по длине. В ней выявляется несколько светящихся полос, совпадающих с локализацией структурного гетерохромтина. После удаления их хромосом ДНК они теряют почти полностью способность к флюоресценции.

Если после денатурации ДНК, вызванной нагреванием и некоторыми другими факторами, провести затем ее ренатурацию – восстановление исходной двунитчатой структуры, а затем окрасить хромосомы красителем Гимзы, то в них выявляется четкая дифференцировка на темноокрашенные и светлые полосы – диски. Последовательность расположения этих дисков, их рисунок – строго специфичен для каждой хромосомы. В результате различных вариантов метода удается выявить центромерный и околоцентромерный гетерохроматин (С-диски), диски расположенные по длине хромосом (соответственно Гимзы-диски, G-диски).

Захаровым был разработан перспективный метод изучения хромосом. В основу его положен процесс неодновременной репликации хромосом: одни участки реплицируются раньше, у других этот процесс задерживается и репликация происходит значительно позднее. Неодновременно идет процесс спирализации хромосом, вступающих в митоз. Однако, к тому моменту, когда хромосомы вступают в метафазу, успевет завершиться процесс выравнивания этих различий, и степень конденсации метафазных хромосом становится одинаковой. Было показано, сто можно задерджать этот процесс путем введения 5-бромдезоксиуридина (5-БДУ), который является аналогом тимидина – предшественника ДНК. Если 5-БДУ вводить в конце S-периода. то он включается в синтез ДНК, то есть участки хромосом, где находится это вещество, остаются слабоокрашенными, так как была задержана спирализация. Рано редуплицировавшиеся участки хромосомы, успевшие спирализоваться, интенсивно окрашиваются (Р-диски). Расположение темных и светлых дисков при этом методе противоположно тому, что наблюдается при G-окраске.

Сравнительный анализ различных методов окраски показал, что один и тот же диск может выделяться как светлый неокрашенный или темноокрашенный, но порядок расположения дисков идентичен при и всех методиках. Следовательно, не вызывает сомнения, что их расположение и последовательность имеют закономерный характер. специфичный для каждой хромосомы.

Если нарушения касаются половых хромосом, то методика упрощается. В этом случае проводится не полное кариотипирование, а применяется метод исследования полового хроматина в соматических клетках.

Половой хроматин – это небольшое дисковидное тельце, интенсивно окрашивающееся гематоксилином и другими основными красителями. Они обнаруживаются в интерфазных клеточных ядрах млекопитающих и человека. непосредственно под ядерной мембраной.

Определение полового хроматина нашло применение в судебной медицине, когда требуется по пятнам крови установить половую принадлежность, при анализе. когда надо установить, мужчине или женщине принадлежит найденная часть трупа, даже спустя довольно большой срок после смерти.

При трансплантации тканей тельце полового хроматина может служить своеобразной меткой (если донор и реципиент разных полов). Анализ дает возможность проследить приживление или рассасывание трансплантата.

Половой хроматин. Экспресс-метод определения полового хроматина

Половой хроматин — это хро- матиновое тельце в форме треугольника или полулуния, распола­гающееся в ядрах разных типов клеток. Основание треугольника или полулуния чаще располагается на ядерной мембране, а вершина или выпуклость обращена к центру ядра. У лиц женского пола в клетках эпителия слизистой оболочки рта хроматин обнаруживается в 20—70 % ядер, тогда как у мужчин — от 0 до 5%.

Считают, что половой хроматин представляет собой одну из Х-хромосом, находящуюся в относительно неактивном состоянии (тельце Барра).

Половой хроматин легко выявляется при окраске любым из основных ядерных красителей. Его можно обнаружить в тканях организма, клетках кожи, слизистой оболочки рта, волосяных луковиц, крови и др.

Чаще всего половой хроматин определяют в клетках слизистой оболочки щеки. Для этого металлическим шпателем делают соскоб с внутренней поверхности щеки и полученный клеточный материал тонким равномерным слоем наносят на предметное стекло. Для окраски мазка используют одну каплю 1,5 или 2 % раствора уксусно­кислого ацетоорсеина. Препарат накрывают покровным стеклом, осторожно фильтровальной бумагой удаляют излишек краски и через 2—3 мин препарат готов для микроскопирования.

Для приготовления раствора красителя берут 1,5 или 2 г орсеина и растворяют в 45 мл ледяной уксусной кислоты. Раствор нагревают до появления паров и добавляют 55 мл дистиллированной воды, после чего охлаждают и фильтруют.

При отсутствии орсеина А. М. Захаров предложил использовать красители тиозиновой группы: метиленовый синий, азур I. Для окраски 20—50 мг одного из указанных красителей растворяют в 10 мл дистиллированной воды. Окраска производится 2—3 каплями раствора.

Подсчет полового хроматина производят под микроскопом марки МБИ-3 или МБИ-6 с иммерсионными объективами. Подсчитывают не менее 100 ядер, у которых ровные контуры, гладкая оболочка и половой хроматин прилегает к ядерной оболочке

Исследование полового хроматина (Х-хромосом) помогает в диаг­ностике таких хромосомных аномалий по половым хромосомам, как синдромы Шерешевского—Тернера (45 ХО), Клайнфельтера (47 XXY), трисомия X (47 XXX). Выявленное при исследовании число полового хроматина в ядре клетки позволяет судить о количестве Х-хромосом, которых всегда на единицу больше, чем Обнаруженных телец хроматина.

Генеалогический метод, его использование для определения типа и характера наследования. Расчет риска наследственных заболеваний. Родословные при различных типах наследования: аутосомно-доминантном, аутосомно-рецессивном, доминантном Х-сцепленном, рецессивном Х-сцепленном, Y-сцепленном.

Этот метод основан на прослеживании какого-либо нормального или патологического признака в ряде поколений с указанием родственных связей между членами родословной.

Генеалогический метод является основным связующим звеном между теоретической генетикой человека и применением ее достижений в медицинской практике.

Суть этого метода состоит в том. чтобы выяснить родственные связи и проследить наличие нормального или патологического признака среди близких и дальних родственников в данной семье. Сбор сведений начинается от пробанда. Пробандом называется лицо, родословную которого необходимо составить. Им может быть больной или здоровый человек – носитель какого-либо признака или лицо, обратившееся за советом к врачу-генетику. Братья и сестры пробанда называются сибсами. Обычно родословная составляется по одному или нескольким признакам.

Метод включает два этапа:

сбор сведений о семье

генеалогический анализ

Для составления родословной проводят краткие записи о каждом члене родословной с точным указанием его родства по отношению к пробанду. Затем делают графическое изображение родословной. Генеалогический метод тем информативнее, чем больше имеется достоверных сведений о здоровье родственников больного. При собирании генетических сведений и их анализе надо иметь в виду, что признак может быть выражен в разной степени, иногда незначительной – микропризнаки.

После составления родословной начинается второй этап – генеалогический анализ, целью которого является установление генетических закономерностей:

в начале требуется установить имеет ли признак наследственный характер; если какой-либо признак встречался в родословной несколько раз, то можно думать о его наследственной природе; однако это может быть и не так, например, какие-то внешние факторы или профессиональные вредности могут вызывать сходные заболевания у членов одной семьи

в случае обнаружения наследственного характера признака необходимо установить тип наследования: доминантный, рецессивный, сцепленный с полом

Основные признаки аутосомно-доминантного наследования:

проявление признака в равной мере у представителей обоих полов

наличие больных во всех поколениях (по вертикали) при относительно большом количестве сибсов

наличие больных и по горизонтали (у сестер и братьев пробанда)

у гетерозиготного родителя вероятность рождения больного ребенка (если второй родитель здоров) составляет 50%

Следует учесть, что при доминантном типе наследования может быть пропуск в поколениях за счет слабо выраженных, «стертых» форм заболевания (малая эксперссивность мутантного гена) или за счет его низкой пенетрантности (когда у носителя донного гена признак отсутствует).

Основные признаки аутосомно-рецессивного наследования:

относительно небольшое число больных в родословной

наличие больных «по горизонтали» (болеют сибсы – родные, двоюродные)

родители больного ребенка чаще фенотипически здоровы, но являются гетерозиготными носителями рецессивного гена

вероятность рождения больного ребенка составляет 25%

Рецессивный признак проявляется тогда, когда в генотипе имеются оба рецессивных аллеля.

При проявлении рецессивных заболеваний нередко встречается кровное родство родителей больных. Следует иметь в виду, что наличие отдаленного родства бывает неизвестно членам семьи. Приходиться учитывать косвенные соображения , например, происхождение из одного и того же малонаселенного пункта, или принадлежность к какой-либо изолированной этнической или социальной группе.

Основные признаки наследования, сцепленного с полом:

заболевания, обусловленные геном, локализованным в Х-хромосоме, могут быть как доминантными, так и рецессивными

при доминантном Х-сцепленном наследовании заболевание одинаково проявляется как у мужчин, так и у женщин и в дальнейшем может передаваться по потомству (в этом случае женщина может передавать этот ген половине дочерей и половине сыновей)

при рецессивном наследовании заболеваний, сцепленными с Х-хромосомой, как правило страдают мужчины (гетерозиготная носительница – мать – передает мутантный ген половине сыновей, которые будут больны и половине дочерей, которые оставаясь фенотипически здоровыми, как и мать, тоже являются носительницами и передают рецессивный ген вместе с Х-хромосомой следующему поколению)

Близнецовый метод изучения генетики человека. Понятие конкордантности и дисконкордантности. Определение соотносительной роли наследственности и среды в формировании признака

Близнецовый метод

Это один из наиболее ранних методов изучения генетики человека, однако он не утратил своего значения и в настоящее время. Близнецовый метод был введен Ф.Гамильтоном, который выделил среди близнецов две группы:

одняйцевые (монозиготные)

двуяйцевые (дизиготные)

Монозиготные близнецы при нормальном эмбриональном развитии всегда одного пола. Дизиготные близнецы рождаются чаще (2/3 общего количества двоен), они развиваются из двух одновременно созревших и оплодотворенных яйцеклеток. Такие близнецы могут быть и однополые и разнополые. С генетической точки зрения они сходны как обычные сибсы, но у них большая общность факторов среды во внутриутробном (пренатальном) и частично в постнатальном периодах.

Если изучаемый признак проявляется у обоих близнецов пары, их называют конкордантными. Конкордантность – это процент сходства по изучаемому признаку. Отсутствие признака у одного из близнецов – дискордантность.

Близнецовый метод используется в генетике человека для того, чтобы оценить степень влияния наследственности и среды на развитие какого-либо нормального или патологического признака.

Для оценки роли наследственности в развитии того или иного признака производят расчет по формуле:

Н = (% сходства ОБ - % сходства ДБ) / (100 - % сходства ДБ)

где:

Н- коэффицент наследственности

ОБ – однояйцевые близнецы

ДБ – двуяйцевые близнецы

•При Н = 1 признак полностью определяется наследственным компонентом

•При Н = 0 признак определяется влиянием среды

•При Н = близкий к 0,5 признак определяется примерно одинаковым влиянием наследственности и среды на формирование признака

Популяционно-статистический метод. Генофонд популяции. Закон Харди-Вайнберга, его значение для определения частот генов и генотипов в популяции. Условия идеальной (менделеевской) популяции.

Популяционно-статистический метод

Этот метод позволяет изучить распространение отдельных генов в человеческих популяциях. Обычно производится непосредственное выборочное исследование части популяции либо изучают архивы больниц, родильных домов, а также проводят опрос путем анкетирования. Выбор способа зависит от цели исследования. Последний этап состоит в статистическом анализе. Одним из наиболее простых и универсальных математических методов является метод, предложенный Г.Харди и В. Вайнбергом . Имеется и ряд других специальных математических методов. В результате становится возможным определить частоту генов в различных группах населения, частоту гетерозиготных носителей ряда наследственных аномалий и болезней.

Изучение распространенности генов на определенных территориях показывает, что в этом отношении их можно разделить на две категории:

имеющие универсальное распространение (к их числу относится большинство известных генов)

встречающиеся локально, приемущественно в определенных районах; к их числу относятся, например, ген серповидноклеточной анемии и ген, определяющий врожденный вывих бедра

Популяционно-статистический метод позволяет определить генетическую структуру популяций (соотношение между частотой гомозигот и гетерозигот). Знание генетического состава популяций имеет большое значение для социальной гигиены и профилактической медицины.

Генофонд — понятие из популяционной генетики, описывающее совокупность всех генных вариаций (аллелей) определённой популяции. Популяция располагает всеми своими аллелями для оптимального приспособления к окружающей среде. Можно также говорить о едином генофонде вида, так как между разными популяциями вида происходит обмен генами.

Если во всей популяции существует лишь один аллель определённого гена , то популяция по отношению к вариантам этого гена называется мономорфной. При наличии нескольких разных вариантов гена в популяции она считается полиморфной.

Если у рассматриваемого вида имеется более чем один набор хромосом, то совокупное количество разных аллелей может превышать количество организмов. Однако в большинстве случаев количество аллелей всё же меньше. При сильном инбридинге часто возникают мономорфные популяции лишь с одним аллелем многих генов.

Одним из показателей объёма генофонда является эффективная величина популяции, сокращённо Ne. У популяции людей с диплоидным набором хромосом может иметься максимально в два раза больше аллелей одного гена, чем индивидов, то есть Ne <= 2 * N (величины популяции). Исключены при этом половые хромосомы. Аллели всей популяци в идеальном случае распределены по закону Харди-Вайнберга.

Более крупный генофонд с множеством разных вариантов отдельных генов ведёт к лучшему приспособлению потомства к меняющейся окружающей среде. Разнообразие аллелей позволяет приспособиться к изменениям значительно быстрее, если соответствующие аллели уже имеются в наличии, чем если они должны появиться вследствие мутации. Тем не менее, в неизменяющейся окружающей сред

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]