Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Поюровская. Стоматологическое материаловедение

.pdf
Скачиваний:
5632
Добавлен:
09.02.2015
Размер:
3.17 Mб
Скачать

Степень переохлаждения оказывает большое влияние на основные параметры процесса кристаллизации: скорость «зарождения» центров кристаллизации и скорость роста кристаллов. При малых значениях степени переохлаждения, когда

Рис. 8.2.

Образование зерен или кристаллитов в структуре металла. Влияние скорости охлаждения на величину зерен*.

* На основе схемы R.W. Phillips «Skinner's Science of Dental Materials» W.B. Saunders Co.,

1982, 8-е изд., с. 255.

число «зародышей» кристаллизации невелико, а скорость роста достигает больших значений, после затвердевания металл становится крупнозернистым. С увеличением степени переохлаждения (скорости охлаждения) количество центров кристаллизации резко возрастает. Это приводит к образованию мелкокристаллической структуры. В технологии металлов стремятся получить мелкозернистую структуру, для которой характерны более высокие механические показатели. Для этого регулируют скорость охлаждения, а также

вносят в расплавленный металл посторонние твердые частицы (модификаторы), увеличивающие число центров кристаллизации («зародышей»).

Образование центров кристаллизации может происходить двумя путями. Первый называется гомогенной кристаллизацией. Он может осуществляться быстрым охлаждением (закаливанием в воде), при котором образуется больше ядер кристаллизации на единицу объема. Другим способом уменьшения размеров зерен является добавление в расплав посторонних твердых частиц, в качестве которых могут быть использованы очень тонкие частицы высокоплавкого металла или порошка оксида. Этот процесс с затравочными ядрами кристаллизации называется гетерогенной кристаллизацией.

Если бы при росте кристаллов им можно было обеспечить свободное пространство, они получили бы правильную форму с развитыми гранями. Результатом была бы идеальная кристаллическая решетка структуры металла. Но в реальных условиях рост кристаллов ограничивается столкновением и срастанием отдельных граней с соседними растущими кристаллами. С этим связано образование зерен или кристаллитов неправильной формы. Искажения кристаллической решетки в основном расположены по границам зерен, а внутреннее строение кристалла сохраняет правильную характерную для данного металла форму.

В процессе охлаждения расплава ряда металлов возможно возникновение явления перехода одной кристаллической формы в другую. Такое явление называют аллотропией или полиморфизмом металлов. Различные кристаллические формы одного элемента называются аллотропическими модификациями и обозначаются буквами греческого алфавита: α, β, λ и т.д., начиная с той формы, которая существует при более низкой температуре.

Порядок расположения атомов (упаковка), соответствующая указанным элементарным ячейкам кристаллов, наблюдается не во всем объеме кристаллической структуры металла. Реальный металл имеет

точечные, линейные и поверхностные дефекты структуры. Линейные дефекты или несовершенства вызываются сдвигом или смещением (дислокацией) одной части кристаллической структуры относительно другой. Кристаллическая решетка в зоне дислокации упруго искажается. Это явление оказывает существенное влияние на механические свойства металлов.

Чистые металлы в стоматологии имеют крайне ограниченное применение. Они слишком мягкие (например, золото) или склонны к коррозии, как чистое железо. К счастью, металлы сохраняют свои металлические свойства не только в чистом виде, а и с добавками других элементов в жидком или твердом состоянии. Таким образом, чтобы достичь оптимальных для стоматологии свойств, большинство металлов представляют собой смеси двух или более металлических элементов. Хотя такие смеси можно получать различными способами, в большинстве случаев их получают сплавлением металлов при температурах выше температур плавления. Полученные в результате этого процесса металлические твердые тела, содержащие два или более металлов, называют сплавами. Сам термин «металл» часто используют как обобщенное название как для чистых металлов, так и для сплавов.

Большинство сплавов затвердевают не при одной определенной температуре, как чистые металлы, а в диапазоне температур. Внутри этой температурной области сохраняются две фазы, жидкая и твердая. Выше этой температурной области находится область температур, которую называют температурами ликвидуса, а ниже - температурами солидуса металлического сплава. Эти температурные области являются характеристикой для каждого отдельного сплава и связаны с его составом, так же, как температура плавления характеризует каждый индивидуальный металл.

Сплавы классифицируют по числу сплавляемых элементов (компонентов): если два элемента - бинарный сплав; три - тройной сплав и т.д.

На основе совместимости атомов металлов, составляющих сплав в твердом состоянии, различают несколько типов сплавов. Наипростейший - когда при микроскопическом анализе сплава можно различить, что его зерна похожи на зерна чистых металлов; структура каждого зерна гомогенна. Такой тип сплава называют механической смесью. Бывают металлы, которые способны взаимно растворяться друг в друге в твердом состоянии, сплавы таких металлов называют твердыми растворами. Большинство золотых стоматологических сплавов являются

твердыми растворами. Существуют металлические сплавы, относящиеся к типу интерметаллических соединений. Примером последних служит стоматологическая амальгама. Наибольшее число сплавов, применяемых в стоматологии, относится к твердым растворам (рис. 8.3).

Рис. 8.3. Типы строения сплавов*

* На основе рисунка в книге «Материаловедение в стоматологии» под ред. А.И. Рыбакова,

М., Медицина, 1984, с. 107.

ЛЕКЦИЯ 9 СТОМАТОЛОГИЧЕСКИЕ СПЛАВЫ

Классификация стоматологических сплавов. Основные свойства стоматологических сплавов. Коррозия металлических сплавов и ее значение для восстановительной стоматологии.

В стоматологии количество сплавов ограничено специфическими требованиями, предъявляемыми к материалам для восстановления зубов. Тем не менее и в стоматологии используют немалое количество сплавов металлов, классификация которых представлена на схеме 9.1.

Схема 9.1.

Основные виды металлических сплавов в стоматологии

Согласно международному стандарту ИСО 8891-98 к благородным сплавам относят сплавы, содержащие от 25 до 75% масс. золота и/или металлов платиновой группы, к последним относятся: платина, палладий, родий, рутений и осмий.

Золотые сплавы различают по количественному содержанию золота в них (с большим - более 75% и с малым 45-60% содержанием золота), и по механическим свойствам, разделяющим золотые сплавы на 4 типа:

тип 1 - низкой прочности;

тип 2 - средней прочности;

тип 3 - высокой прочности;

тип 4 - сверхпрочные сплавы.

Стоматологические сплавы различают также по технологии их применения при изготовлении тех или иных восстановлений зубочелюстной системы. Для изготовления цельнолитых конструкций съемных зубных протезов используются сплавы золота с платиной и палладием, серебряно-палладиевые и кобальтохромовые сплавы (КХС). Такие сплавы называют прецизионными, т.е. точными. Для этой группы сплавов требуется строгое соблюдение определенного химического состава и технологического режима, существенно отличающихся от обычно принятых при изготовлении отливок. В стоматологии из прецизионных сплавов изготавливают зубные протезы различных конструкций методом литья по выплавляемым моделям.

Относительно новые для стоматологии сплавы для металлокерамических протезов. К ним относятся благородные сплавы палладия и никеля, а также золотые сплавы. Сейчас к ним добавились и неблагородные сплавы, КХС и сплавы на основе никеля и кобальта.

Для изготовления несъемных зубных протезов у нас в стране продолжают широко использовать нержавеющие стали типа 1Х18Н9Т. К ним относят устойчивые к коррозии в атмосфере, речной и морской воде сплавы. Основными компонентами нержавеющих сталей являются железо, хром и никель.

Сплав железа с 1,7 до 4,5% углерода называется чугуном. При содержании углерода 0,1-1,7% получают стали. Железо с углеродом образуют твердые растворы.

Высокие технологические и физико-механические свойства КХС привели к тому, что он стал вытеснять в стоматологии золотоплатиновые сплавы для изготовления конструкций

цельнолитых зубных протезов. Основными компонентами сплава являются кобальт, хром и никель, их содержание в сплаве не должно быть ниже 85%, что гарантирует его устойчивость к коррозии в полости рта.

Хорошими физико-механическими свойствами обладают и хромоникелевые сплавы, однако из-за свойств никеля, который нельзя признать полностью биосовместимым металлом, применение этих сплавов в стоматологии ограничено.

Помимо свойств биосовместимости к основным свойствам, характеризующим качество стоматологических сплавов, можно отнести ряд свойств, которые разбиты на три группы: физико-механические, химические и технологические (схема 9.2).

Схема 9.2.

Группы основных свойств, характеризующих качество стоматологических сплавов

Кмеханическим свойствам относят твердость, прочность, упругость, вязкость, пластичность, хрупкость. В зависимости от способа приложения нагрузки различают показатели механических свойств при динамической и статической нагрузках.

Кфизическим свойствам относят плотность, температуры плавления, теплопроводность, расширение и сжатие при нагревании и охлаждении. К химическим свойствам относят растворимость, окисляемость, жаростойкость.

Для стоматологических материалов особое значение имеет коррозионная стойкость в полости рта. Взаимодействие между металлом и средой полости рта первоначально может заключаться в некоторой адсорбции компонентов этой среды поверхностью металла. При определенных условиях адсорбция может привести к возникновению химических реакций, которые чаще всего приводят к коррозии, т.е. процессу разрушения металлов вследствие их химического или электрохимического взаимодействия с окружающей средой, ротовой жидкостью, слюной, пищей. Усилению процессов коррозии способствуют и знакопеременные нагрузки, которые претерпевают металлические конструкции в полости рта.

Характер коррозии металлов различается по:

а) форме разрушения;

б) механизму процесса.

По форме разрушения коррозии делят на:

1)равномерную (сплошную);

2)местную;

3)межкристаллитную.

По механизму процесса различают:

1)химическую;

2)электрохимическую коррозию.

В агрессивных средах, не проводящих электрического тока, например газах при высоких температурах (газовая коррозия), многих органических веществах (нефть, бензин и пр.), обычно развивается химическая коррозия. В условиях полости рта при функционировании восстановленной протезом зубочелюстной системы наиболее вероятно возникновение электрохимической коррозии. Схематично процесс электрохимической коррозии представлен на рис. 9.1.

Рис. 9.1. Схема процесса электрохимической коррозии и электродные потенциалы ряда металлов

Ротовая жидкость является электролитом, так как содержит поваренную соль, хлорид и карбонат кальция, а также другие соли. Коррозии благоприятствуют температурные условия и знакопеременные нагрузки. Именно из-за этих условий, способствующих коррозии, из великого множества сплавов для стоматологии оказались пригодными немногие из них. Только золотые, серебряно-палладиевые, кобальтохромовые и нержавеющая сталь.

К технологическим свойствам металлов относятся: жидкотекучесть, ликвация, ковкость, способность к различным видам обработки. Жидкотекучесть характеризует способность расплава металла заполнять форму. Чем больше расстояние между линиями ликвидуса и солидуса, тем меньше текучесть сплава.

Ликвация - возникновение неоднородности при затвердевании сплава в результате ряда причин. Основными факторами, приводящими к ней, являются скорость охлаждения и разность в плотности компонентов сплава. Ликвация вызывает появление локальных участков в отливке с различными свойствами. Чем больше температурный интервал затвердевания сплава, тем больше выражено явление ликвации. Ликвация ухудшает механические свойства сплавов (пластичность) и снижает коррозионную стойкость.

Ковкость - свойство металлов, дающее возможность подвергать их ковке (прокатке, волочению, штамповке). Ковкость характеризуется двумя показателями - пластичностью, т.е. способностью металла подвергаться деформации под давлением без разрушений, и величиной его сопротивления при этом деформировании. У металлов, имеющих хороший показатель ковкости, относительно высокая пластичность сочетается с относительно низким сопротивлением деформированию.

Термической обработкой называются процессы теплового воздействия по определенным режимам с целью изменения структуры и свойств сплавов. Такой обработке могут подвергаться сплавы, склонные к полиморфным превращениям. Существуют следующие виды термической обработки: закалка, отжиг, отпуск и нормализация.

ЛЕКЦИЯ 10 СТОМАТОЛОГИЧЕСКАЯ КЕРАМИКА. ОБЩАЯ ХАРАКТЕРИСТИКА

Краткая история стоматологической керамики. Понятия керамики и фарфора. Классификация стоматологической керамики по назначению. Состав стоматологической керамики. Технология получения и структура керамики.

Керамика - самый древний поделочный искусственный материал, относящийся к каменному веку (неолита), но сохранивший свое значение в человеческом обществе до настоящего времени. Применение керамики в стоматологии связывают с именем французского аптекаря Alexis Duchateau, который впервые изготовил себе съемные протезы с фарфоровыми зубами. В 1844-1883 г. началось промышленное производство фарфоровых зубов в Англии, Германии и Америке. В конце XIX в. доктор Лэнд запатентовал способ изготовления жакетных коронок из фарфора на платиновой фольге. А в 1962 г. был запатентован метод изготовления металлокерамических коронок, и началась эра металлокерамики. В конце ХХ века появились новые керамические составы и современные технологии для изготовления цельнокерамических протезов.

Говоря о стоматологической керамике, часто используют два термина для обозначения данного класса восстановительных материалов - керамика и фарфор. По определению энциклопедического словаря (Энциклопедический словарь, М., «Сов. энциклопедия», 1985), слово «керамика» произошло от греческого keramike - гончарное искусство (keramosглина). К керамике относят изделия и материалы, полученные спеканием глин и их смесей с минеральными добавками, а также оксидами и другими неорганическими соединениями. Фарфор - это белая полупрозрачная (прозрачная) керамика, которую обжигают до глазурованного состояния.

Первые составы фарфора имели повышенную хрупкость. Их применение в восстановительной стоматологии ограничивалось изготовлени-

ем искусственных зубов и, в редких случаях, коронками для одиночных зубов. С развитием стоматологического материаловедения и совершенствованием материалов для восстановления зубов применение керамических материалов существенно расширилось

(схема 10.1).

Схема 10.1.

Виды зубных протезов из керамики

В общем виде состав керамики представляет собой смесь полевого шпата, каолина, кварца и красителей. Полевой шпат является очень распространенным минералом, входящим в состав гранита и других горных пород. Температура его плавления от 1150 до 1200 °С. Полевые шпаты, используемые для стоматологического фарфора, представляют собой смеси натриевого и калиевого полевого шпата. Натриевый полевой шпат называется альбитом, калиевый - микроклином или ортоклазом. Последний - основной материал для получения стоматологической фарфоровой массы.

Каолин, или белая глина, представляет собой продукт разрушения горных пород, состоящий в основном из минерала каолинита, который является соединением алюминия и кремневой кислоты. Каолин - гидратированный алюмосиликат, который действует в качестве связки, повышая способность необожженного фарфора к моделированию. Из-за непрозрачности в состав стоматологической керамики его добавляют только в очень маленьких количествах, если вообще добавляют. При нагревании до температуры 1350 °С каолин спекается, а при нагревании до 1850 °С - плавится.

Кварц - самый распространенный минерал. По своему химическому составу он является ангидридом кремниевой кислоты. В природе встречается в виде прозрачных призм, которые называют горным хрусталем. В зависимости от примесей кварц может принимать различные оттенки. Температура плавления кварца 1800 °С. При расплавлении он превращается в стекловидную массу высокой прочности.

Для окрашивания стоматологического фарфора применяют различные оксиды металлов - железа, титана, кобальта и хрома. В состав фарфоровой массы вводят и другие компоненты. Например, плавни (флюсы). Эти вещества понижают температуру плавления фарфоровой массы (карбонат натрия, карбонат кальция и др.). Температура их плавления не выше 800 °С. Пластификаторы - вещества, которые вводят в фарфоровые массы, не содержащие каолина. В качестве пластификаторов используют органические вещества (декстрин, крахмал, сахар), которые полностью выгорают при обжиге. Эти вещества необходимы для придания пластичности фарфоровой массе во влажном состоянии.

Сравнивая составы бытового и стоматологического фарфора, можно легко заметить, что в составе последнего преобладает полевой шпат, а в бытовом - каолин (табл. 10.1).

Таблица 10.1

Сравнение составов бытового и стоматологического фарфора*

В зависимости от соотношения основных компонентов - полевого шпата, каолина и кварца, а также некоторых добавок, фарфор может быть тугоплавким (высокотемпературным), среднеплавким (среднетемпературным) и низкоплавким (низкотемпературным).

* В.Н. Трезубов, М.З. Штейнгарт, Л.М. Мишнев «Ортопедическая стоматология. Прикладное материаловедение», С.-Петербург, Специальная литература, 1999, с. 279.

Благодаря сложным составам современного стоматологического фарфора, в котором присутствует ряд модифицирующих добавок, и широкой вариации режимов обжига, существует возможность варьирования свойствами фарфора в соответствии с конкретным назначением в стоматологии.

Стоматологические фарфоровые массы получают смешиванием исходных компонентов, сплавлением их и затем резким охлаждением в воде. Большое значение имеет тщательный контроль чистоты исходного сырья. Смесь (шихту) помещают в шамотовые тигли и проводят обжиг до получения расплава - стекломассы, которую затем резко охлаждают. В результате такого охлаждения в массе возникают внутренние напряжения, которые приводят к ее растрескиванию. Этот процесс называют фриттованием, а полученный в результате его продукт фриттой. Фритта, как хрупкий материал, легко размалывается в тонкий порошок. Фриттование способствует перемешиванию составных частей массы.

Окрашивание и получение различных оттенков стоматологических фарфоровых масс осуществляют добавлением к порошку шихты окрашивающих пигментов. Во время предварительного плавления (фриттования) между компонентами проходят пирохимические реакции и связанные с ними усадочные процессы.

При рентгеноструктурном анализе в обожженной стоматологической керамике определяется кристаллическая фаза лейцит. Наличие лейцита в фазовом составе является отличительной особенностью стоматологической керамики, так как в бытовом фарфоре такая кристаллическая фаза отсутствует. Присутствие лейцита в стоматологической керамике обусловлено использованием в качестве исходного компонента калиевого полевого шпата. Лейцит в фарфоре образуется при термическом разложении калиевого полевого шпата:

при этом SiO2 растворяется в образовавшемся стекле, повышая вязкость расплава. Кристаллы лейцита в виде глобул, равномерно и в большом количестве распределенные в стеклянной матрице, препятствуют распространению трещины и тем самым повышают прочность фарфора. Кроме того, кристаллы лейцита в отличии от муллита (кристаллической фазы бытового фарфора) обладают прозрачностью.

Муллит образуется из каолина (каолинита) при обжиге керамической массы при температуре 1200-1300 °C для изготовления изделий бытового назначения.

Во время последующих обжигов керамических масс в зуботехнической лаборатории порошки фарфоровых масс сплавляются или точнее спекаются при обжиге с образованием восстановительного протеза. Температура этого обжига зависит от состава фарфора и ее

следует тщательно контролировать, чтобы получить нужную структуру материала и свести к минимуму пиропластическое течение.

Хотя многие восстановительные марки фарфора содержат кристаллическую фазу, их следует рассматривать как стекла. Высокотемпературный фарфор может быть более точно назван «полевошпатным стеклом».

Многочисленными микроскопическими исследованиями установлены следующие структурные элементы фарфора (рис. 10.1): стекловидная изотропная фаза, состоящая из полевошпатного стекла; не растворившиеся в стекле оплавленные частицы кварца; кристаллы лейцита, распределенные в аморфном полевошпатном стекле; микропоры.

Рис. 10.1.

Технологические этапы получения стоматологического фарфора и его структура

Количество стеклофазы возрастает при повышении температуры плавления и увеличении времени плавки. Нерастворившиеся частицы кварца вместе с кристаллами лейцита образуют скелет структуры фарфора.

Важное влияние на свойства фарфора оказывает пористость. Закрытая пористость влияет и на эстетические свойства (уменьшение прозрачности керамического восстановления), и на механическую прочность фарфора. Наибольшую пористость масса имеет перед началом спекания, по мере образования стекловидной фазы пористость снижается, повышается плотность материала и, соответственно, сокращаются размеры изделия.

ЛЕКЦИЯ 11 СТОМАТОЛОГИЧЕСКАЯ КЕРАМИКА. ТЕХНОЛОГИИ ПРИМЕНЕНИЯ И СВОЙСТВА