Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Molekuljarnaja Biologija Kletki v3

.pdf
Скачиваний:
27
Добавлен:
10.02.2015
Размер:
24.15 Mб
Скачать

241

Рис. 18-27. Организация последовательностей ДНК, кодирующих константную область тяжелой цепи. Последовательности, кодирующие каждый из доменов и шарнирный участок (экзоны), разделены некодирующими последовательностями (нитронами). Интроны удаляются путем сплайсинга первичных РНК-транскриптов при образовании мРНК. ДНК, кодирующая вариабельную область тяжелой цепи, не показана. Возможно, что наличие интронов в последовательности ДНК облегчало возникновение случайных дупликаций в ДНК, приведших к появлению генов антител в процессе эволюции (разд. 9.4.12 и 10.5.3).

18.3.4. Рентгеноструктурные исследования выявили трехмерное строение доменов и антиген-связывающих участков иммуноглобулинов [19]

Даже тогда, когда известна полная аминокислотная последовательность белка, из нее невозможно вывести его трехмерную структуру - для этого необходим рентгеноструктурный анализ кристаллов данного белка (разд. 4.1.14). В кристаллическом виде уже получены несколько фрагментов миеломных белков и один интактный IgG. Данные рентгеноструктурного анализа этих белков подтвердили предсказания иммунохимиков. Еще важнее то, что эти исследования позволили понять, как на основе одной и той же структурной схемы конструируются миллионы различных антигенсвязывающих участков.

Как показано на рис. 18-28, все домены Ig имеют очень сходную пространственную структуру, в основе которой лежит так называемая иммуноглобулиновая укладка. Каждый домен представляет собой, грубо говоря, цилиндр размером 4 х 2,5 х 2,5 нм, построенный как «сэндвич» из двух белковых слоев, где один слой образован тремя, а другой - четырьмя отрезками полипептидной цепи. В каждом слое прилегающие друг к другу отрезки антипараллельны и образуют β-слой (разд. 3.3.2). Два таких слоя расположены приблизительно параллельно и соединены одной внутрицепочечной дисульфидной связью.

Вариабельные домены уникальны в том отношении, что каждый из них имеет свой особенный набор из трех гипервариабельных областей, уложенных в три гипервариабельные петли (см. рис. 18-28). Гипервариабельные петли L- и Н-вариабельных доменов собраны в группу и образуют антиген-связывающий участок, как это и было предсказано. Важный принцип, раскрытый в результате проведенных исследований, состоит в том, что вариабельная область молекулы антитела состоит из весьма консервативной жесткой структуры, к одному из концов которой прикреплены гипервариабельные петли. Поэтому огромное разнообразие антиген-связывающих участков может создаваться путем изменения одних только гипервариабельных петель - их длины и аминокислотной последовательности - без нарушения общей пространственной структуры, необходимой для функционирования антитела.

Рентгеноструктурный анализ фрагментов антител, связанных с антигеном или антигенной детерминантой (гаптеном), позволил установить, как именно (в ряде конкретных случаев) гипервариабельные петли L-

242

Рис. 18-28. Пространственная структура молекулы антитела IgG (по данным рентгеноструктурного анализа). А. Каждый аминокислотный остаток молекулы белка изображен здесь в виде маленького шарика. Одна из тяжелых цепей показана белым цветом, другая - темно-серым. Домены легких цепей показаны цветными. Молекула антитела гликозилирована: олигосахаридная цепь, прикрепленная иомену СН2, изображена светлосерой. Б. Пространственная укладка всей легкой цепи. Как вариабельный, так и константный домены состоят из двух β-слоев (один из них составлен из трех отрезков цени, а другой из четырех). Полипептидные цепи в этих двух слоях показаны разными цветами; слои соединены между собой дисульфидной связью. Обратите внимание, что все гипервариабельные области образуют петли на дальнем конце вариабельного домена, где они сближаются и формируют часть антиген-связывающего участка (А - по Е. W. Silverton et al., Proc. Natl. Acad. Sci. USA 74, 5140, 1977; Б - no M. Schiffer at al., Biochemistry, 12.4620, 1973. Copyright 1973 Amer. Сhem. Soc.)

и Н-вариабельных доменов совместно образуют одну антиген-связывающую поверхность. Размеры и форма каждой такой поверхности варьируют в зависимости от конформации полипептидной цепи в гипервариабельных петлях, которая в свою очередь определяется последовательностью боковых цепей аминокислот в этих петлях. Таким образом, сейчас уже понятны общие принципы структуры антител.

Заключение

Каждая L- и Н-цепь иммуноглобулина состоит из вариабельной области длиной примерно в ПО аминокислотных остатков на N-конце и следующей за нею константной области, которая имеет такую же длину в L-цепи и в три или четыре раза длиннее в Н-цепи. Каждая цепь составлена из повторяющихся, сходным образом свернутых доменов: у L-цепи имеется один домен в вариабельной области (VL) и один в константной области

243

(CL), а у Н-цепи - один домен в вариабельной области (VH) и три или четыре в константной области (Сн). Изменчивость аминокислотной последовательности в вариабельных областях L- и Н-цепей ограничена в основном несколькими небольшими гипервариабельными областями, которые пространственно сближены друг с другом и образуют антиген-связывающий участок. Этот участок имеет размеры, достаточные для того, чтобы контактировать с антигенной детерминантой, соответствующей по величине пяти или шести остаткам сахара.

18.4. Как создается разнообразие антител

По имеющимся оценкам, даже в отсутствие антигенной стимуляции у мыши может вырабатываться много миллионов разных молекул антител, - это ее преиммунный репертуар. Поскольку антиген-связывающие участки многих антител могут перекрестно реагировать со множеством близких, но различающихся антигенных детерминант, преиммунный репертуар, видимо, достаточно велик для того, чтобы почти для каждой потенциальной антигенной детерминанты нашелся подходящий антиген-связывающий участок.

Антитела представляют собой белки, а белки кодируются генами. Поэтому разнообразие антител ставит сложную генетическую проблему: каким образом число видов вырабатываемых в организме антител может превышать число генов в его геноме? (Полагают, например, что

Рис. 18-29. Трехмерная структура комплекса антиген-антитело (по данным рентгеноструктурного анализа). Антиген - в данном случае это фермент лизоцим выделен цветом. Антиген-связывающий участок Fab-фрагмента антитела образуют совместно две цепи - легкая и тяжелая (на рисунке светло-серая и темно-серая соответственно). Б. Здесь модели антигена и антитела разделены, чтобы показать их комплементарные контактирующие поверхности. Выступ на комплементарной поверхности антигена представляет собой остаток глутамина. В ряде других антител, исследованных тем же методом, антиген-связывающий участок (для небольшого гаптена) образует гораздо более глубокую щель. (A. Amit et al., Science, 233, 747-753, 1986. Copyright 186 by the AAAS.)

Рис. 18-30. Эксперимент, который прямо показал, что в ходе развития В-клеток ДНК подвергается перестройке. Была экстрагирована ДНК из мышиной опухоли плазматических клеток (миеломы). синтезирующей специфическую легкую цепь Ig, и из 13-дневного мышиного эмбриона, у которого

антитела еще не вырабатываются. Ту и другую ДНК расщепляли рестрикционной зндонуклеазой и полученные фрагменты подвергали электрофорезу в агаровом геле. Затем выявляли фрагменты, в которых имелись последовательности, кодирующие С-область L-цепи, и фрагменты с кодом для определенной V-области L-цепи (для этого использовали гибридизацию по Саузерну с двумя радиоактивными ДНК-зондами: один из них был комплементарен кодирующей последовательности для V- области, а другой - для С-области мРНК для специфической L-цепи миеломы) (разд. 18.3). В ДНК клеток миеломы последовательности, кодирующие С - и V-области, были обнаружены в составе одних и тех же фрагментов ДНК, тогда как в ДНК из эмбриона они оказались в разных фрагментах (так же как и в ДНК из другой миеломной опухоли, вырабатывавшей другую L-цепь; на схеме не показано).

244

у человека геном содержит менее 105 генов.) Однако проблема не столь грандиозна, как кажется на первый взгляд. Поскольку в антиген-связывающий участок вносят вклад как L-, так и Н-цепи, у животного с 1000 генов, кодирующих L-цепи, и с 1000 генов, кодирующих Н-цепи, продукты этих генов могли бы образовать 1000 х 1000 различных комбинаций, т.е. 106 разных антиген-связывающих участков (если предположить, что при этом любая L-цепь может сочетаться с любой Н-цепью). Тем не менее иммунная система выработала уникальные генетические механизмы, позволяющие ей генерировать почти неограниченное число различных L- и Н-цепей. Эти механизмы могут варьировать в зависимости от вида животных; например, они весьма различны у кур и у млекопитающих. Ниже мы сосредоточим внимание на механизмах, используемых у млекопитающих.

18.4.1. В процессе развития В-клеток происходит сборка генов антител из отдельных генных сегментов [20]

Изучение аминокислотных последовательностей миеломных белков привело к предположению о том, что вариабельная (V) и константная (С) области каждой из цепей Ig могут кодироваться двумя отдельными генными сегментами, которые каким-то образом соединяются в ДНК перед их экспрессией. Первые прямые данные о перестройке ДНК в процессе развития В- клеток были получены в 1976 г. при сравнении ДНК из ранних мышиных эмбрионов, неспособных к выработке антител, с ДНК из клеток мышиной миеломной клеточной линии, вырабатывающих антитела. Как показали эксперименты, специфические последовательности, кодирующие V- и С-области и используемые клетками миеломы, находились в этих клетках в одном и том же рестрикционном фрагменте, а у эмбрионов - в двух разных рестрикционных фрагментах. Следовательно, на каком-то этапе дифференцировки В-клеток происходит перестройка последовательностей ДНК, кодирующих молекулы антител (рис. 18-30).

Сейчас известно, что для каждого типа цепей Ig-легких цепей х, легких цепей X и тяжелых цепей - существует отдельный «пул» (обширная группа) генных сегментов, которые могут быть использованы при синтезе отдельной полипептидной цепи. Эти пулы находятся в разных хромосомах, и каждый из них содержит обычно большое число генных сегментов, кодирующих V-область цепи Ig, и несколько меньшее число сегментов, кодирующих С- область. В процессе развития В-клетки происходит - путем сайт-специфической рекомбинации (разд. 5.4.7)-сборка полной кодирующей последовательности для каждой из двух цепей Ig, которые будут синтезироваться; при этом последовательности, кодирующие V- и С-области, соединяются друг с другом. Помимо соединения отдельных сегментов гена, эти перестройки также активируют транскрипцию с генного промотора - возможно, путем изменений относительного положения энхансеров и сайленсеров, воздействующих на промотор (разд. 10.2.7). Поэтому цепь Ig может синтезироваться только после того, как произойдет перестройка ДНК. Процесс объединения генных сегментов увеличивает разнообразие антиген-связывающих участков; здесь играют роль несколько факторов, которые мы рассмотрим ниже.

18.4.2. Каждая V-область кодируется более чем одним генным сегментом [21]

Когда изучили последовательности ДНК, кодирующие V- и С-области, оказалось, что С-область той или иной цепи Ig кодируется лишь одним

245

Рис. 18-31. Процесс соединения V-J, с которым связано образование æ-легкой цепи у мыши. В ДНК первичных половых клеток (где гены иммуноглобулинов не экспрессируются и поэтому не перестраиваются) группа из четырех J-генных сегментов отделена от С-генного сегмента коротким интроном, а от примерно 300 V-генных сегментов - тысячами нуклеотидных пар. J-сегмент кодирует около 15 С-концевых аминокислот

V-области; участок соединения V- и J-сегментов совпадает с третьей гипервариабельной областью. V-сегменты на хромосоме часто бывают собраны в группы гомологичных семейств, которые, по-видимому, распределены по области длиной более 50000 нуклеотидных пар. В ходе развития В-клеток определенный V-сегмент (в представленном здесь случаеV3) перебрасывается точно в положение рядом с одним из J-сегментов (в данном случае J3). «Лишний» J-ген (74) и интрон транскрибируются (вместе с соединенными -, J3- и С-сегментами), а затем вырезаются путем РНК-сплайсинга. В результате образуются молекулы мРНК, в которых последовательности VЗ, J3 и С расположены рядом. Эти мРНК затем

транслируются в -легкие цепи.

генным сегментом (С-сегментом), тогда как каждая V-область- более чем одним сегментом. V-область каждой L-цепи кодируется последовательностью ДНК, собираемой из двух генных сегментов - длинного V-сегмента и короткого соединительного J-сегмента (не путать с белковой J-цепью, которая кодируется в другой части генома, - см. разд. 18.2.5). На рис. 18-31 показаны генетические механизмы, участвующие в образовании L-цепей.

V-область каждой Н-цепи кодируется последовательностью ДНК, собираемой из трех генных сегментов: V-сегмента, J-сегмента и D- ceгмента (diversity gene segment). Организация генных сегментов, участвующих в синтезе Н-цепей, показана на рис. 18-32.

Большое число наследуемых V-, J- и D-сегментов, кодирующих цепи Ig, само по себе вносит существенный вклад в разнообразие антител. Однако этот вклад еще больше увеличивается путем комбинирования разных сегментов (так называемое комбинационное разнообразие).

Например, у мыши каждый из примерно 300 V-сегментов пула для легкой цепи может соединиться с любым из четырех J-сегментов (см. рис.

18-31), и в результате этот пул может кодировать по меньшей мере 1200 (300 • 4) разных V-областей -цепи. (Пул для легкой цепи λ у мыши содержит лишь два V-сегмента; у человека - значительно больше.) Аналогично, любой из 1000 (или около того) V-сегментов пула для Н-цепи мыши может соединиться с любым из четырех J-сегментов и из по крайней мере 12 D-сегментов, так что могут быть закодированы минимум 48000 (1000-4-12) разных V-областей тяжелой цепи. Эти оценки весьма приблизительны, поскольку точное число V-генных сегментов в этих пулах неизвестно.

Наиболее важный механизм, приводящий к разнообразию антиген-связывающих участков антител, - это комбинационное разнообразие, возникающее при сборке унаследованных V-, J- и D-генных сегментов

Рис. 18-32. У мыши пул генных сегментов для Н-цепи содержит, по-видимому, около 1000 V-сегментов, по меньшей мере 12 D- сегментов, 4 J-сегмента и упорядоченное скопление С-сегментов, каждый из которых кодирует Н-цепь своего класса. D-сегмент кодирует от I до 15 аминокислот в третьем гипервариабельном участке V-области. Единый масштаб на рисунке не выдержан, а многие детали опущены. Например:

1)имеются четыре Сγ-сегмента (Сγ1, Сγ2a, Сγ2b) и Сγ3);

2)каждый С-сегмент составлен из многих экзонов (см. рис. 18-27);

3)JH1- и Сα-сегменты отделены друг от друга примерно 200 000 пар нуклеотидов; так же как и в случае Vα-сегментов, Vн-сегменты собраны на хромосоме в группы гомологичных семейств. В образовании Н-цепи участвуют те же генетические механизмы, что и в образовании L- цепей (как показано на рис. 18-31), за исключением того, что вместо одной перестройки ДНК необходимы две: сначала D-сегмент соединяется с J- сегментом, а затем к ним присоединяется V-сегмент.

246

в различных сочетаниях. Как мы уже видели, у мыши один лишь этот механизм дает возможность вырабатывать по меньшей мере 1000 разных VL- областей и порядка 50000 разных Vн-областей. Те и другие затем могли бы образовать 5▪107 комбинаций, т.е. разных антиген-связывающих участков. В дополнение к этому сам по себе механизм соединения, как мы увидим, намного увеличивает число комбинаций - вероятно, более чем в 1000 раз. В результате это число будет значительно больше общего числа В-лимфоцитов у мыши (~ 108).

18.4.3. Неточное соединение генных сегментов увеличивает разнообразие V-областей [21]

Генные сегменты, которые могут быть удалены друг от друга на сотни тысяч пар нуклеотидов, соединяются, образуя функциональные последовательности, кодирующие VL- или Ун-области. Детали этого механизма неизвестны. К каждому генному сегменту примыкают консервативные последовательности ДНК, которые, вероятно, служат участками узнавания для ферментов сайт-специфической рекомбинации (разд. 5.4.7); благодаря этому рекомбинируются только подходящие друг к другу сегменты. Например, V-сегмент всегда соединяется только с J- или D-сегментом, но не с другим V-сегментом (рис. 18-33).

В большинстве случаев сайт-специфической рекомбинации соединение ДНК бывает точным, но это не относится к соединению генных сегментов для антител. На концах рекомбинирующих сегментов часто теряется различное число нуклеотидов; в случае Н-цепей может также

Судьба промежуточного участка ДНК при соединении двух генных сегментов Ig зависит от ориентации сегментов. Если транскрипционная ориентация этих двух сегментов одинакова, то промежуточная ДНК, как показано на рисунке, освобождается в виде кольца и отбрасывается (делеционное соединение); если же сегменты ориентированы противоположно, эта ДНК сохраняется в перевернутом положении (инверсионное соединение). В биохимическом отношении процессы в обоих случаях одинаковы.

Рис. 18-33. Два типа сигналов для узнавания, используемых при соединении генных сегментов V-области в пулах генных сегментов L- и Н-цепей. А. Локализация сигналов. Для простоты показаны только по два генных сегмента каждого типа. Сигналы обоих типов состоят из консервативных последовательностей (приведенных внизу) длиной в 7 и 9 пар нуклеотидов (п. н.), разделенных неконсервативным спейсером; в одном случае (◄) длина спейсера 21-23 п. н. (примерно два витка двойной спирали ДНК), в другом (►) 11-12 п.н. (примерно один виток). Соединяются только подходящие друг к другу генные сегменты: это происходит лишь при сочетании «одновиткового» спейсера с «двухвитковым» (так называемое правило 12/23). Б. Как полагают, сигналы узнавания в свою очередь узнаются ферментом сайт-специфической рекомбинации (рекомбиназой), катализирующим соединение.

247

произойти вставка одного или нескольких случайно выбранных нуклеотидов. Такие случайные выпадения или вставки нуклеотидов в местах соединения сегментов в огромной степени увеличивают разнообразие кодирующих V-область последовательностей, образующихся путем рекомбинации, особенно в третьей гипервариабельной области. В данном случае увеличение разнообразия обходится дорого, так как во многих случаях оно приводит к сдвигу рамки считывания и, как следствие, к возникновению нефункционального гена. В процессе развития В-клеток такое «непродуктивное» соединение происходит очень часто.

18.4.4. Направляемое антигеном соматическое гипермутирование осуществляет тонкую подстройку образования антител [22]

После иммунизации с течением времени обычно происходит постепенное увеличение сродства антител к тому антигену, которым проводилась иммунизация. Этот феномен называют созреванием сродства, и он обусловлен накоплением соматических мутаций в последовательностях, кодирующих V-области, после антигенной стимуляции В-лимфоцитов. Это было наиболее убедительно показано при изучении выработки олигоклональных антител (разд. 18.1.6) у инбредных мышей, у которых V-области L-цепей или Н-цепей кодируются в основном какой-то одной комбинацией генных сегментов. Поскольку изначально последовательности, кодирующие V-область, одинаковы, происходящие в них со временем мутации можно легко обнаружить. В такого рода исследованиях активированные В-клетки, взятые от индивидуальных мышей в разное время после иммунизации, гибридизуют с клетками миеломы, не секретирующими антитела; в результате получают клетки-гибридомы, каждая из которых продуцирует один-единственный вид антител (разд. 4.5.4). Эти бессмертные клетки представляют собой неограниченный источник РНК и ДНК, кодирующих V-области антител. Нуклеиновые кислоты можно затем секвенировать и выявлять изменения в исходных последовательностях, кодирующих V-область. Было показано, что после повторной иммунизации в таких последовательностях со временем быстро накапливаются точечные мутации. Частоту соматических мутаций в этих последовательностях оценивают в 10-3 на одну пару нуклеотидов за одну клеточную генерацию, что примерно в миллион раз больше частоты спонтанного мутирования в других генах. Поэтому такой процесс получил название соматического гипермутирования. Полагают, что этот процесс происходит во время активации В-клеток антигеном с превращением их в клетки памяти, а не при активации с образованием клеток, секретирующих антитела. В-клетки памяти образуются главным образом в лимфоидных фолликулах вторичных лимфоидных органов (см. рис. 18-8).

Поскольку пролиферация В-клеток стимулируется связыванием антигена, любая происходящая в процессе иммунного ответа мутация, увеличивающая сродство мембраносвязанной молекулы антитела, будет вызывать предпочтительную пролиферацию В-клетки, синтезирующей такое антитело, особенно тогда, когда с течением времени после иммунизации концентрация антигена будет снижаться. Таким образом, созревание сродства - это результат повторяющихся циклов соматического гипермутирования, за которыми следует направляемая антигеном селекция в процессе гуморального ответа.

248

Рис. 18-34. Последовательный выбор активируемых генов Ig, который должен происходить в развивающихся В-клетках, для того чтобы они выработали антитела только с одним типом антиген-связывающего участка. Клетка должна отобрать один из четырех пулов генных сегментов для L-цепей и один из двух пулов генных сегментов для Н-цепей. В ходе развития в клетке-предшественнице сначала активируется один генный пул Н-цепей, и она становится пре-В-клеткой, вырабатывающей только свободные тяжелые цепи класса µ. После периода интенсивной пролиферации в пре-В-клетке активируется один пул легких цепей г или X, и она становится В-клеткой, вырабатывающей уникальную молекулу IgM.

18.4.5. Соединение генных сегментов для антител регулируется таким образом, что обеспечивает моноспецифичность В-клеток [23]

Многочисленные экспериментальные данные показали, что, как и предсказывает теория клональной селекции, каждая отдельная В-клетка вырабатывает антитела с антигенсвязывающим участком только одного типа, т.е. В-клетки моноспецифичны. Моноспецифичность В-клеток может быть важна по меньшей мере по двум причинам. Вопервых, если бы каждая клетка могла вырабатывать более одного вида антиген-связывающих участков, то некоторые из них могли бы продуцировать как полезные антитела, так и антитела к «своим» антигенам (аутоантитела); это затруднило бы отбор на способность реагировать с чужеродными антигенами при одновременном поддержании толерантности к собственным антигенам. Во-вторых, моноспецифичность гарантирует, что все антитела, вырабатываемые одной клеткой, составлены из двух идентичных половинок и поэтому содержат два идентичных антитен-связывающих участка; это позволяет секретируемым антителам образовывать обширные сети из сшитых антигенов, что способствует элиминации антигена (см. рис. 18-13).

Требование моноспецифичности означает, что должен существовать какой-то механизм, благодаря которому при активации генов Ig в процессе развития каждая В-клетка образует только один тип VL-областей и один тип Vн-областей. Поскольку В-клетки (как все соматические клетки) диплоидны, каждая из них имеет шесть пулов генных сегментов, кодирующих антитела, два пула для Н-цепей, по одному от каждого из родителей, и четыре

пула для L-цепей, по одному и одному λ, от каждого из родителей. Таким образом, перестройки ДНК могли бы в принципе происходить независимо в каждом пуле для Н-цепей и для L-цепей; в результате сборки разных последовательностей, кодирующих V-область в разных пулах, в одной клетке могло бы вырабатываться до восьми различных видов антител, каждое со своим антиген-связывающим участком. В действительности, однако, каждая В- клетка использует лишь два из шести пулов: один из четырех генных пулов для L-цепей и один из двух для Н-цепей (рис. 18-34). Таким образом, каждая В-клетка должна делать выбор

не только между - и λ-пулами для L-цепей, но также между материнскими и отцовскими генными пулами. Экспрессия только материнского или только отцовского аллеля какоголибо гена в данной клетке называется аллельным исключением; этот феномен, повидимому, свойствен только генам, кодирующим антитела (и еще генам, кодирующим близко родственные белки Т-клеточных рецепторов, см. разд. 18.6.1). Материнские и отцовские аутосомные гены для других белков экспрессируются в клетке приблизительно одинаково.

Механизмы аллельного исключения и выбора - или λ-L-цепей в ходе развития В-клеток неясны. Имеющиеся данные позволяют предполагать, что это происходит путем регуляции перестройки ДНК по принципу обратной связи: видимо, функциональная перестройка в одном пуле генных сегментов подавляет перестройки в остальных пулах, кодирующих полипептидную цепь того же типа. Некоторые из таких данных получены в экспериментах, в которых уже собранные ранее клонированные гены инъецировали в ядро оплодотворенной яйцеклетки мыши. В результате получаются трансгенные мыши (разд. 5.6.10), у которых во всех лимфоцитах содержится перестроенный ген. Например, в клонах В-клеток, выделенных из трансгенных мышей с перестроенным геном L-цепи, перестройка эндогенных генов L- цепи обычно оказывается подавленной. Аналогично, введение перестроенного гена µ обычно подавляет перестройку эндогенных генов Н-цепи.

249

Сборка последовательностей, кодирующих V-область, в развивающейся В-клетке происходит, по-видимому, в строгом порядке, начиная с пула для Н-цепи и с шагом в один сегмент. Сначала на обеих родительских хромосомах D-сегменты объединяются с Jн-сегментами. Затем в одной из этих хромосом происходит соединение VH с DJH. Если такая перестройка дает функциональный ген, последующий синтез полной µ-цепи (которая всегда образуется первой из Н-цепей) выключает дальнейшие перестройки генных сегментов, кодирующих Vн-область, и подает сигнал

для включения перестроек VL. Сначала происходит соединение VL с JL в -пуле генных сегментов. Если оно неудачно, перестраивается другой

-пул. Если и эта перестройка оказывается неудачной, происходит объединение в одном, а затем и в другом λ-пуле. Наконец, если все-таки на каком-либо этапе происходит удачное соединение и образуются L-цепи, то они объединяются с предшествующими µ-цепями молекулы антител IgM, которые выключают дальнейшую сборку последовательностей, кодирующих область VL.

Для того чтобы выключить дальнейшую сборку последовательностей, кодирующих VH, достаточно, видимо, образования интактной µ- цепи. Однако для того, чтобы остановить сборку последовательностей, кодирующих VL, требуется, вероятно, построение полной молекулы антитела. Если развивающейся В-клетке не удается собрать функциональные последовательности, кодирующие как VH-, так и VL-области, она оказывается неспособной вырабатывать молекулы антител и, вероятно, погибает.

Хотя никаких биологических различий между легкими цепями и λ не было обнаружено, наличие двух отдельных пулов генных сегментов, кодирующих L-цепи, явно имеет смысл: оно увеличивает вероятность того, что пре-В-клетка, успешно собравшая последовательность, кодирующую VH, успешно соберет также и последовательность для VL и превратится в В-клетку.

18.4.6. Переключение синтеза с мембраносвязанной на секретируемую форму одного и того же антитела происходит путем изменения РНК-транскриптов для Н-цепи [24]

Рассмотрев генетические механизмы, от которых зависит структура антиген-связывающего участка, мы перейдем теперь к механизмам, определяющим биологические свойства антитела, т.е. тип константной области тяжелой цепи. Если сделанный однажды выбор определенных генных сегментов для кодирования антиген-связывающего участка является окончательным и для самой В-клетки, и для ее потомков, то тип синтезируемой Сн-области изменяется в процессе развития В-клеток. Изменения могут быть двух типов: переход от мембраносвязанной формы к секретируемой форме одной и той же Сн-области и изменение класса этой области.

Антитела всех классов могут синтезироваться как в мембраносвязанной, так и в растворимой, секретируемой форме. Мембраносвязанная форма служит рецептором для антигена на поверхности В-клеток. Растворимая форма вырабатывается только после того, как клетка будет стимулирована антигеном и должна будет секретировать антитела. Две формы антител различаются только С-концевым участком Н-цепи: например, у мембраносвязанных молекул IgM Н-цепь оканчивается гидрофобным участком, закрепляющим ее в липидном бислое плазматической мембраны В-клетки, тогда как у Н-цепей секретируемых молекул IgM имеется вместо этого гидрофильный С-конец, позволяющий молекулам выходить из клетки. Способность В-клетки производить

250

Рис. 18-35. При активации антигеном В-клетка переключается с синтеза антител, связанных с плазматической мембраной, на выработку секретируемой формы тех же антител путем изменения образующихся в клетке мРНК для Н-цепи. Предполагают, что это обусловлено изменением способа расщепления первичных РНК-транскриптов для Н-цепи и их 3'-концевого полиаденилирования. Две формы Н-цепи различаются только С- концевой областью: мембраносвязанная форма имеет гидрофобный «хвост», удерживающий ее в мембране, тогда как у секретируемой формы этот хвост гидрофильный, что позволяет ей выйти из клетки. Длинный полиаденилированный РНК-транскрипт, определяющий мембраносвязанную форму Н-цепи, имеет донорный и акцепторный сайты сплайсинга, что дает возможность удалить последовательность РНК, кодирующую гидрофильный хвост секретируемой формы. В отличие от этого короткий полиаденилированный РНК-транскрипт, определяющий секретируемую форму, имеет только донорный сайт сплайсинга; поэтому последовательность РНК, которая образуется в результате перекрестного разрывавоссоединения, не может быть удалена.

µ-цепи с константными областями двух различных типов сначала казалась парадоксальной, так как В-клетка содержит лишь одну копию генного сегмента Сµ на гаплоидный геном и использует при выработке антител только один из имеющихся двух генных пулов для Н-цепей. Парадокс был разрешен, когда выяснилось, что активация В-клеток антигеном приводит к изменению способа процессинга РНК-транскриптов для µ-цепи в ядре, как показано на рис. 18-35 (см. также разд. 10.4.5). В переключении с мембраносвязанной на секретируемую форму антител других классов участвует сходный механизм.

18.4.7. В-клетки могут переключаться с выработки одного класса антител на выработку другого [25]

В ходе своего развития многие В-клетки переключаются с выработки антител одного класса на выработку антител других классов - процесс, называемый переключением класса. Все В-клетки начинают свою деятельность по синтезу антител с выработки молекул IgM, которые встраиваются в плазматическую мембрану и служат рецепторами для антигена. Затем, еще до взаимодействия с антигеном, большая часть В-клеток переходит к одновременному синтезу молекул IgM и IgD, используемых как мембраносвязанные антигенные рецепторы. При стимуляции антигеном некоторые из этих клеток активируются и начинают выделять антитела IgM, преобладающие в первичном гуморальном ответе (разд. 18.2.5). Другие стимулированные антигеном клетки переключаются на выработку антител классов IgG, IgE или IgA; клетки памяти несут эти антитела на своей поверхности (часто одновременно с IgM), а активные В-клетки их секретируют. Молекулы IgG, IgE и IgA в совокупности называют антителами вторичных классов, так как они, по-видимому, образуются только после антигенной стимуляции и преобладают во вторичных гуморальных ответах.

Класс антител определяется константной областью их Н-цепи (разд. 18.3.3). Поэтому способность В-клеток изменять класс вырабатываемых антител без изменения антиген-связывающего участка означает, что одна и та же собранная последовательность, кодирующая Vн- область, может в разное время ассоциироваться с разными генными

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]