Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Сборник задач по высшей математике 2 том

.pdf
Скачиваний:
59
Добавлен:
15.03.2015
Размер:
27.38 Mб
Скачать

HaiJ.mu ee7l:mOpHble JlUHUU nJloc1I:ux ee1l:mOpHblX nOJleiJ.:

5.1.18. F = x ·i+y .j. 5.1.19. F = y. i+x .j.

5.1.20.F = (y, -x).

HaiJ.mu ee1l:mOpHble JlUHUU npOCmpaHCmeeHHblX ee1l:mOpHblX nOJleiJ.:

5.1.21.

F = a . i + b . j

+ k, r,n,e a, b, c - KOHCTaHTbI.

5.1.22.

F = (y + z) . i

+ (x + z) .j + (x + y) . k.

5.1.23.

F( -y, x, a), r,n,e a -

KOHCTaHTa.

5.1.24.

,ll;oKa3aTb, qTO grad (u· v) = grad v + gradu.

a ITo OIIpe,n,e.nemIJO rpa,n,HeHTa CKaJUlpHoro IIOJUI HMeeM:

 

grad ('1.1'

v) = ((uv)~, (uv)~, (uv)~).

IIcIIOJIb3YH IIpaBHJIO ,n,H<p<pepeHlJ,HpOBaHHH "pOH3Be,n,eHHH <PYHKIJ;Hit, a TaIOKe IIpaBHJIa CJIOlKeHHH BeKTopOB H YMHOlKeHHH HX Ha qHCJIO B Koop,n,HHaTHoit <popMe, IIOJIyqaeM:

grad (u· v) = (u~v + uv~,u~v + uv~,u~v + uv~) =

=

(

I

I

I

)+(

 

I

I

')

('

I ')+

(' I

')

uxv, uyv, uzv

 

uVx' uvy, uVz

= v· ux, uY' Uz

vx, vy, vz =

 

 

 

 

 

 

 

 

 

 

 

= grad v + gradu. •

5.1.25.

,ll;oKIDKHTe CBoitcTBa rpa,D,HeHTa CKaJIHPHOro IIOJIH:

 

 

 

 

a) grad (U + C) = grad U, r,n,e C - KOHCTaHTaj

 

 

 

 

 

6) grad (C· U) = C· grad U,r,n,e C -

KOHCTaHTaj

 

 

 

 

B) grad (*) = 12 (v· gradu - grad v).

 

 

 

5.1.26.

 

 

 

 

 

v

 

 

 

= cp' (u) . grad u.

 

 

,ll;oKIDKHTe paBeHCTBO grad (cp(u))

 

5.1.27.

 

HaitTH grad (u· cp(u)).

 

af

 

 

af

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.28. ,ll;oKa3aTb, qTO gradf(u,v) = au . gradu + av . gradv.

 

B cJleaY?O!4UX 3aaa"l.aX r

 

= x . i + y . j

+ z . k

u r

= Irl.

 

 

 

5.1.29.

 

BbIqHCJIHTb grad r.

 

 

 

 

 

 

 

a Hait,n,eM .D.JIHHY

BeKTopa r: r = Irl = J

x 2 + y2 + Z2.

,ll;aJIee

Haxo,n,HM

qacTHbIe "POH3Bo,n,HbIe <PYHKIJ;HH r:

 

 

 

 

 

 

 

 

 

 

r'

-

x

 

 

 

r' =

 

y

+ Z2

= ~,

 

 

 

 

x

- J x2 + y2 + z2

 

Y

Jx2 + y2

 

 

 

 

 

 

 

 

 

r'

=

 

z

=~.

 

 

 

 

 

 

 

 

 

 

z

J x2

+ y2 + Z2

 

r

 

 

 

CJIe,n,OBaTeJIbHO, rpa,n,HeHTOM CKaJIHpHOrO IIOJIH r

6y,n,eT BeKTopHoe IIOJIe

 

 

 

 

 

gradr = (~,~,~) = ¥(x,y, z) = ~.

 

 

 

 

 

 

 

 

5.1.30.

 

,ll;oKMaTb, qTO gradr2 = 2r.

 

 

 

 

 

240

5.1.31.

HathH gradf(r).

 

5.1.32.

HaitTH grad(c· r), r)l,e c -

<pHKcHpoBaHHbIit BeKTOp.

5.1.33.

HaitTH npOH3BO)l,HYIO nOJUI U = r B HanpaBJIeHHH BeKTopa r.

a KaK

H3BeCTHO, npOH3BO)l,HaJI no

HanpaBJIeHHIO e)l,HHHqHOrO BeKTopa t

<PYHKIJ;HH U =U(x, y, z) MO>KeT 6bITb Hait)l,eHa no <popMYJIe: ~~ =grad U ·t.

HaxO)l,HM rpa)l,HeHT CKamlpHoro nOJIH U: grad U = grad r = ~ (CM. 3a)l,a-

qy 5.1.29). E)l,HHHqHbIM BeKTopOM, HMeIOIIJ;HM TO :>Ke HanpaBJIeHHe, qTO H

BeKTOp r, 6Y)l,eT BeKTOp t = 1;1

= ~. Tor)l,a

 

 

 

au = grad U . t = !. . !. = .1. (r . r) = r2

= 1.

at

r r r2

r2

 

 

5.1.34. HaitTH npOH3BO)l,HYIO nOJIH U = } B HanpaBJIeHHH rpa)l,HeHTa CKaJIHpHOrO nOJIH v = r.

5.1.35. HaitTH nOBepXHOCTH YPOBHH CKaJIHpHOrO nOJIH

 

x2

y2

z2

 

U= 2" + b2

+ 2"'

 

a

 

c

5.1.36.

HaitTH nOBepXHOCTH ypOBHH CKaJIHPHOI'OnOJIH U = eX2 +v2 .

5.1.37.

IIo~a3aTb, qTO )l,JIH CKaJIHpHOrO nOJIH U = x 2 +y2 +Z2 BeKTopHbIe

 

nOJIH grad U H grad Igrad UI KOJIJIHHeapHbI.

5.1.38.

HaitTH yrOJI Me:>K)l.y rpa)l,HeHTaMH CKaJIHPHbIX nOJIeit U = xyz H

V = yz + zx + xy B TOqKe Mo(l, -1,2).

5.1.39.B KaKHX TOqKax npOCTpaHCTBa rpa)l,HeHTbI CKaJIHPHbIX nOJIeit U =

=x 2 + y2 + Z2 H V = x 2 _ y2 + Z2 nepneH)l,HKYJIHPHbI?

5.1.40. HaitTH nOBepXHOCTH ypOBHH CKaJIHpHOrO nOJIH 1grad UI, r)l,e CKa-

 

JIHpHOe nOJIe U 3a)l,aHO paBeHCTBOM U = xy + yz + ZX .

5.1.41.

.II:oKa3aTb, qTO JIHHHH YPOBHH nJIOCKHX CKaJIHPHbIX nOJIeit U = xy

 

H V = x 2 - y2 nepneH)l,HKYJIHPHbI B Ka:>K)l,Oit TOqKe nJIOCKOCTH,

 

KpOMe HaqaJIa KOOp)l,HHaT.

5.1.42.

HaitTH BeKTopHbIe JIHHHH nOJIH F = yz . i + xz . j + xy . k.

5.1.43.

HaitTH BeKTopHbIe JIHHHH nOJIH F = r, r)l,e r = x . i + y . j + z . k.

5.1.44.

HaitTH r x grad r, r)l,e r = Irl, a r = x . i + y . j + z . k.

KOHTponbHble BonpOCbl III 60nee CnO)l(Hbie saACIHIIIR

5.1.45. MorYT JIH pa3HbIe CKaJIHpHbIe nOJIH 06JIa)l,aTb O)l,HHM H TeM :>Ke Ha60pOM nOBepxHocTeit YPOBHH?

5.1.46. BepHo JIH, qTO eCJIH nOBepxHocTH ypOBHH Y CKaJIHPHbIX nOJIeit U

H V O)l,HHaKOBbI, TO 9TH nOJIH Y)l,OBJIeTBOpHIOT yCJIOBHIO

U - V = const?

241

5.1.47. MorYT JIH pa3Hble rrOBepXHOCTH ypOBHg CKaJIgpHOrO rrOJIg U rrepe-: ceKaTbCg?

5.1.48. MO)KeT JIH Y pa3HbIX BeKTopHbIX rrOJIeit 6bITb O,!l;HH H TOT)Ke Ha60p BeKTOpHbIX JIHHHit?

5.1.49. TIpHBecTH rrpHMep ,!l;BYX rrpOCTpaHCTBeHHbIX CKaJIgpHbIX rroJIeit, Y KOTOPbIX rrOBepXHOCTH ypOBHg OPTOI'OHaJIbHbIB K~,!l;Oit TO'IKe rrpocTpaHcTBa.

5.1.50. B,!l;OJIb KaKHX JIHHHit rpa,!l;HeHT CKaJIgpHOrO rrOJIg U = xy +yz + zx

COXpaHgeT CBoe HarrpaBJIeHHe?

5.1.51. HaitTH CHJIOBble JIHHHH BeKTopHoro rrOJIg

F{nz - ly, lx - mz, my - nx).

5.1.52. HaitTH rrpOH3BO,!l;HYIO CKaJIgpHOrO rrOJIg U B HarrpaBJIeHHH rpa,!l;H- eHTa CKaJIgpHOrO rrOJIg V.

5.1.53. KaKoBa CBg3b Me)K,!l;y rrOBepXHOCTgMH ypOBHg CKaJIgpHOrO rrOJIg U

H BeKTopHbIMH JIHHHgMH grad U.

5.1.54.BepHo JIH, 'ITOeCJIH JIHHHg, ypaBHeHHe KOTOPOit x 2+y2 = 1, gBJIg-

eTCg JIHHHeit YPOBHg HeKOToporo CKaJIgpHOrO rrOJIg U, TO JIHHHg x 2 + y2 = 2 TO)Ke gBJIgeTCg JIHHHeit ypOBHg Toro )Ke CKaJIgpHOrO

rroJIg?

§2. AViBEPrEHLI,VlH VI POTOP BEKTOPHOrO nOJlH. OnEPATOP rAMVlJlbTOHA

AIilBepreHu,IIIH III POTOP

~,Lf'U6epeeH:4'Ueii (pacxoiJ'U.MOCm'b1O) BeKTopHoro nOJUI F(P, Q, R) Ha3b1BaeTCH

CK3J1HpHOe nOJIe, onpe.n;eJIHeMOe paBeHCTBOM

divF = ~~ + ~~ + ~~ = P~ + Q~+ R~.

~Pomopo.M, BeKTopHoro nOJIH F(P, Q, R) Ha3bIBaeTCH BeKTopHoe nOJIe, onpe.n;e-

JIHeMOe CJIe.n;yIOIIIHM 06pa30M:

)JjrH y.n;o6CTBa 3anOMHHaHHH pOTopa npHHHTa <pOPM3J1bHaH 3arrHCb:

 

i

j

k

rotF =

{J

{J

{J

{Jx

{Jy

{Jz '

 

 

P

Q

R

r.n;e «YMHOlKeHHe» CHMBOJIOB .n;H<p<pepeHIJ;HpOBaHHH Ha O.n;HY H3 <PYHKIJ;HtI: nOHHMaeTCH KaK B3HTHe COOTBeTCTBYIOIIIetl: '1aCTHotl:npOH3Bo.n;Hotl: 3TOtl: <PYHKIJ;HH.

242

CPU3U'I,eC~ui:t CM'bICJI pomopa2: eCJIH BeKT0P-<PYHK:U;HH v HBJIHeTCH nOJIeM CKOPoCTet!: TBep,!I;OrO TeJIa, Bparn;aIOrn;erOCH BOKpyr HenO,!l;BHlKHOt!: TO'lKH,TO C TO'lHOCTbIO AO '1HCJIOBOrO MHOlKHTeJIH POTOP BeKTOpHOrO nOJIH V npe,!l;CTaBJIHeT co6ot!: MrHoBeHHYIO yrJIOBYIO CKOPOCTb W 3TOrO Bparn;eHHH: W = ~rotv.

POTOP BeKTOpHOrO nOJIH Ha3bIBaIOT HHOr,!l;a 6UXpeM BeKTOpHOrO nOJIH.

OnepaTOp raMMnbTOHa

~Onepamop raMUJI'bmO'Ha HJIH OnepaTOp V ('Ha6J1a) Onpe,!l;eJIHeTCH <P0PMYJIOt!:

TIpHMeHeHHe 3TOrO OnepaTOpa K CKaJIHPHblM H BeKTOpHblM nOJIHM C <P0PMaJIb-

HOt!: TO'lKH3peHHH COOTBeTcTByeT Onepa:U;HH «YMHOlKeHHH» Ha BeKTOp C KOOp,!l;HHa-

a a a

TaMH ax' oy' oz:

i

j

k

a

a

a

VxF= (;x';Y';z) x (P,Q,R) = ax

oy

oz

P

Q

R

HeTPY,!I;HO 3aMeTHTb, 'ITO CTOHrn;He B npaBbIX '1aCTHX nOCJIe,!l;HHX Tpex paBeHCTB BbIpalKeHHH CYTb rpa,!l;HeHT, ,!I;HBepreH:U;HH H POTOP nOJIet!::

VU=gradU, V·F=divF, VxF=rotF.

OnepaTOp llannaca

~Onepamop JIanJiaca (o603Ha'iaeMblt!:V2 = V . V HJIH ~) Onpe,!l;eJIHeTCH <Pop-

MYJIOt!:

V2 = ~+ ~+~.

ox2 oy2 OZ2

TIpHMeHeHHe 3Toro onepaTopa K CKaJIHPHbIM H BeKTopHbIM nOJIHM Onpe,!l;eJIHeTCH paBeHCTBaMH:

~U == V 2U = (~ + ~ + ~) U = 02U

+ 02U + 02U,

ox2 oy2 OZ2

ox2

oy2 OZ2

~F == v2F = V 2 (Pi + Qj + Rk) = (V2P)i + (V2Q)j + (V2R)k.

~ CKaJIHpHOe nOJIe U(x, y, z) Ha3bIBaeTCH 2apMO'HU'I,eC~UM, eCJIH ~U == O. $

20 <pH3H'IeCKOMCMbICJIe ,n;HBepreHIJ;HH 6y,n;eT CKa3aHO B CJIeA)'lOrn;eMnaparpaq,e.

243

5.2.1. BbI'IHCJIHTb)l,HBepreHlJ;HIO H pOTOp BeKTOpHOI'Onoml

F = xy2 . i - yz· j + z2 . k.

Q ITo onpe)l,eJIeHHIO, div F = P~ + Q~ + R~. B HameM CJIY'IaeP = xy2, Q = -yz, R = Z2. OTCIO)l,a HaxO)l,HM P~ = y2, Q~ = -z, R~ = 2z. CJIe)l,OBa-

TeJIbHO, divF = y2 -

Z + 2z = y2 + Z.

BbI'IHCJIHMPOTOP nOJIg F:

i

j

k

a

ty

tz = (R~ - Q~)i+ (P~ - R~)j + (Q~ - P;)k =

rotF = ax

P

Q

R

= (0 + y)i + (0 - O)j + (0 - 2xy)k = (y, 0, -2xy).

BW"{UC./I,Umb ouaepae'H'qu'IO U pomop ae1CmOp'HOao nOM F:

5.2.2.F = c, I')l,ec - nOCTOgHHbIit BeKTOp.

5.2.3.F = r, I')l,er = x . i + y . j + z . k.

5.2.4.F(yz, xz, xy).

5.2.5.F G(y2 + Z2), ~(z2 + x2), ~(X2 + y2)).

5.2.6.F = x2y . i + y2 Z . j + z2 X . k.

5.2.7.BbI'IHCJIHTb)l,HBepI'eHlJ;HIO H POTOP I'pa)l,HeHTaCKaJIgpHOI'OnOJIg

U = U(x,y,z).

5.2.8.BhI'IHCJIHThdiv f'I')l,er(x, y, z) H r = Irl.

("\.r

 

y .

zkH><

 

 

 

 

 

 

 

 

 

 

'-.I r = r .1

+ r .J

+ r'.

an)l,eM

 

 

 

 

 

 

 

 

pI = (~)'

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

= r - x'r x =

 

 

 

 

 

 

 

 

 

 

 

x

 

r

x

 

r2

 

 

 

 

 

 

 

 

 

 

 

 

 

=

r -

x(Jx2 + y2 + Z2)~

=

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

R'

= (~)' = r

2

-

z2

 

 

 

 

 

 

 

 

 

 

 

z

 

r

z

 

r 3

'

 

CJIe)l,OBaTeJIbHO,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

r

r2 -

 

x2

r2 -

 

y2

r2 -

 

z2

3r2

 

r2

2

 

 

 

dlV r =

r

3

+

r

3

+

r3

=

-

 

 

=

 

 

 

 

 

 

 

 

 

 

 

r3

 

 

 

 

5.2.9. BbI'IHCJIHTbdiv(r . r).

 

 

 

 

 

 

 

 

 

 

5.2.10. BhI'IHCJIHTbdiv(f(r) . r).

 

 

 

 

 

 

 

 

 

5.2.11.

 

,n:oKa3aTb paBeHCTBO div(f· F) = gradf· F + divF.

 

Q ITYCTb F

= P . i +Q .j + R . k. TOI')l,af .F =f

.P . i + f

.Q .j + f .k H

div(f . F) = (f P)~ + (fQ)~ + (f R)~ = (f~ . P + f .P~) + (f~ . Q + Q~)+ + (f~ . R + f . R~) = (f~ . P + f~ .Q + f~ .R) + f . (P; + Q~ + R~).

244

B nepBoti cK06Ke CTOHT CKaJUlpHOe npOH3Be,!l;eHHe rpa,n,ueHTa CKa.J1HpHOrO no-

J151 I Ha BeKTOp F, a BO BTOPOti - ,!l;HBepreHIJ;HH BeKTopHoro nOJIH F. TaKHM

06pa30M, div(f . F) = grad F + I .div F.

5.2.12.

,I1;oKa3aTb CBoticTBa JIHHetiHocTH ,!l;HBepreHIJ;HH:

 

 

a) div(F l +F2) = divF1 +divF2;

 

 

6) div(c • F) = div F, r,!l;e c -

KOHCTaHTa.

 

5.2.13.

,I1;oKa3aTb paBeHCTBO: div(U ·c) = gradU ·c,r,!l;e c

- nOCToHHHblti

 

BeKTOp.

 

 

5.2.14.

BbI'IHCJIHTbdiv(U . grad V).

 

 

5.2.15.

,I1;oKa3aTb paBeHcTBo div(F l x

F 2) = F2 . rot Fl -

Fl' rot F 2 •

5.2.16. ,I1;oKa3aTb cBoticTBa JIHHetiHocTH pOTopa:

a) rot (Fl + F 2) = rot Fl + rot F 2;

 

6) rot (c • F) = c . rot F, r,!l;e c -

npOH3BOJIbHaH nOCT05lHHaH.

5.2.17.

,I1;oKa3aTb, 'ITOrot (f. F) = rot F + grad I

x F.

 

 

o I1YCTb F = P . i

+ Q . j

+ R . k. Tor,!l;a I . F = I . P . i

+ I . Q . j + I . R . k.

Rati,!l;eM rot (f . F):

 

 

 

 

 

 

 

 

 

 

 

 

 

i

j

 

 

k

 

 

 

 

 

 

 

 

 

a

a

 

 

a

=

 

 

 

 

 

 

 

rot (f . F) = ax

-

 

-

 

 

 

 

 

 

 

 

 

ay

 

 

az

 

 

 

 

 

 

 

 

 

IP

IQ

 

IR

 

 

 

 

 

 

 

 

 

= i[(fR)~ - (fQ)~]-j[(fR)~ -

(fP)~] + k[(fQ)~ - (fP)~] =

 

 

=i[/~R + IR~ -

I;Q - IQ~]-j[/~R + IR~ -

I;P -

IP~]+

 

+ k[/~Q + IQ~ - I~P -

IP;] = J[i(R~ - Q~) - j(R~ -

P;) + k(Q~ -

P;)]+

 

+ [i(f~R - I;Q) -

j(f~R -

I;P) + k(f~Q -

 

I~P)] =

 

 

i

j

k

 

 

.

.

k

 

 

 

 

 

 

a

a

a

 

+

1

J

f'

= I . rot F + grad I x F.

 

= I· ax

ay

-

 

f'

f'

 

 

az

 

x

Y

z

 

 

 

 

 

 

P

Q

R

 

P

Q

R

 

 

 

 

 

5.2.18.

,I1;oKa3aTb, 'ITOdiv(rot F) = O.

 

 

 

 

 

5.2.19.

BbI'IHCJIHTbPOTOP BeKTopHoro nOJIH F = r·c,r,!l;e c -

nOCT05lHHblti

 

BeKTOp, a

r -

MO,!l;yJIb pa,!l;Hyca-BeKTopa r.

 

 

 

 

5.2.20.

,I1;JIH BeKTopHoro nOJIH F(xy, yz, zx) BbI'IHCJIHTbrot (rot F).

5.2.21.

RatiTH grad (div F), eCJIH F( xyz2,xy - z,zx2).

 

 

5.2.22.

3anHcaTb C nOMOIIJ;bIO onepaTopa Ha6JIa V BeKTopHble nOJIH:

 

a) grad (div F);

 

 

 

 

 

6) rot (grad U).

 

 

o a) ,I1;HBepreHIJ;HH BeKTopHoro nOJIH F C nOMOIIJ;bIO onepaTopa V 3anHCbI-

BaeTCH TaK: V . F. rpa,n,ueHT CKa.J1HpHOrO nOJIH U '1epe3onepaTOp V Bblpa- )KaeTCH CJIe,!l;yIOIIJ;HM 06pa30M: VU. CJIe,!l;OBaTeJIbHO,

grad (div F) = V(div F) = V(V . F).

6) POTOP BeKTopHoro nOJIH F C HCnOJIb30BaHHeM onepaTopa V 3anHCbI-

BaeTCH CJIe,!l;yIOIIJ;HM 06pa30M: V x F. CJIe,!l;OBaTeJIbHO,

 

rot (grad U) = V x (grad U) = V x (VU).

245

5.2.23. 3anlfcaTb C nOMOID;bIO onepaTOpa raMlfJIbTOHa CJIe.l1YIOID;lfe BbIpa-

)KeHlfa:

 

a) div(grad U);

6) div(rot F);

B) rot (rot F);

r) rot (grad (divF)).

5.2.24. ,il;oKa3aTb CJIe.l1YIOID;lfe paBeHCTBa:

a) V' x (V'U) = 0;

6) V' . (V' x F) = 0;

B)V' . (V'U) = V' 2U == t::.U.

5.2.25.,il;oKa3aTb cBotkTBa JIlfHeitHocTIf onepaTopa raMlfJIbToHa:

a)V'(CIUI + C2U2) = CI . V'UI + C2 . V'U2;

6)V'. (CIF I + C2F 2) = CI(V'· Fd + C2(V'· F 2)j

B)V' x (CIFI +C2F 2) = CI(V' x F I) +C2(V' x F 2), r,ll;e CI , C2 -

npOlf3BOJIbHbIe nOCToaHHble,

UI , U2 - CKaJIapHbIe nOJIa,

a F I ,

F2 - BeKTopHbIe nOJIa.

 

 

5.2.26. ,il;oKa3aTb paBeHCTBa (U, V -

CKaJIapHbIe nOJIa, F, FI If

F2 -

BeKTopHbIe nOJIa):

 

 

a) V'(U· V) = UV'V + VV'Uj

6) V'(U . F) = U(V' . F) + (V'U) . Fj

B) V'(FI x F 2) = F2 . (V' x F I) + Fl· (V' x F 2); r) V' x (UF) = U(V' x F) + (V'U) x F.

B'bt"l,Uc.!/,umb auaepee'H'4u'HJ u pomop ae'K:mop'Hoeo nOJIJI F:

5.2.27.F = y . i + z . j + x . k.

5.2.28.F = xy . i + yz . j + zx . k.

5.2.29. F = (x3 + y2 + z) . i + (y3 + Z2 + x) . j + (Z3 + x2 + y) . k.

F zy. xz· xy k

5.2.30.=X' l +y'J+z' .

5.2.31.RaitTIf yrOJI Me)K.l1Y pOTopaMIf BeKTopHbIX nOJIeit FI(X2y,y2z,z2x)

If F2(z,x,y) B

TO'lKeMo(l, 1, 1).

.

5.2.32. RaitTIf ,ll;JIlfHy

pOTopa BeKTopHoro nOJIa

F(x - z2, yz, x 2 + y2) B

TO'lKeM(l, 2, -1).

5.2.33.B KaKlfX TO'lKaxnpocTpaHcTBa POTOP BeKTopHoro nOJIa

F(y2 + Z2,Z2 + x2,X2 + y2)

nepneH,ll;lfKYJIapeH OCIf Ox?

5.2.34.B KaKlfX TO'lKaxnpocTpaHcTBa POTOP BeKTopHoro nOJIa

F(x2y,y2z,Z2X)

nepneH,ll;lfKyJIapeH nJIOCKOCTIf x + y + z = 2?

5.2.35.B KaKlfX TO'lKaXnpocTpaHcTBa POTOPbI BeKTopHbIX nOJIeit

FI(xy,yz,zx) If F2(z,x,y)

KOJIJIlfHeapHbI?

246

B c.n,eoy'lOw,ux 3aOa"taX r = i + y. j + k u r

= Irl:

5.2.36.

BblqHCJIHTb div(c x r), r,!l;e c -

nOCToflHHblit BeKTOp.

5.2.37.

BbIqHCJIHTb divb(r·a), r,!l;e a H b -

nOCTOflHHble BeKTOpbI.

5.2.38.

BbIqHCJIHTb divr(r·a), r,!l;e a -

nOCToflHHbIit BeKTOp.

5.2.39.

BblqHCJIHTb rot (c x r), r,!l;e c -

nOCToflHHbIit BeKTOp.

5.2.40.

BblqHCJIHTb rotr(r·a), r,!l;e a -

nOCToflHHbIit BeKTOp.

5.2.41.

BblqHCJIHTb rot b(r·a), r,!l;e a H b -

nOCTOflHHble BeKTOpbI.

5.2.42.,il;oKa3aTb CBoitcTBa onepaTopa JIanJIaca:

a) 6(Cl Ul + C2 U2 ) = Cl 6Ul + C2 6U2 ;

6) bo(Ul . U2 ) = Ul . 6U2 + 2(V'Ul ) . (V'U2 ) + U2 boUl.

KOHTponbHble Bonpocbl M 60nee CnO)l(Hbie saW-HMR

B c,//,eoy'lOw,ux 3aoa"tax r = x . i + y . j + z . k u r = Irl:

5.2.43.BblqHCJIHTb ,!l;HBepreHIIHIO H POTOP BeKTopHoro nOJIfi F = f(r) . c, r,!l;e c - nOCToflHHblit BeKTOp.

5.2.44. ,il;oKa3aTb, 'ITOeCJIH div(f(r) . r) = 0, TO f(r) = ~. r

5.2.45.BblqHCJIHTb div(grad f(r». KaKoBa ,!l;OJDKHa 6bITb <PYHKIIHfI f(r),

qTo6bI div(gradf(r»

= 0.

5.2.46. BbIqHCJIHTb rot [c x

f(r) . r], r,!l;e c - nOCToflHHblit BeKTOp.

5.2.47.,il;oKa3aTb paBeHCTBO: grad (div F) = V'2F + V' x (V' x F).

5.2.48.,il;oKa3aTb paBeHCTBO: rot (rot F) = V'(V' . F) - V'2F.

5.2.49. BeKTopHoe nOJIe F 3a,!l;aHO paBeHCTBOM: F = c·lnr, r,!l;e r - MO,!l;yJIb pa,!l;Hyca-BeKTopa TOqKH. HaitTH V'F, V' x F H V'2F.

§ 3. nOTOK BEKTOPHOrO no/ul

IIycTb B 06JIacTH n C IR3 3a,n;aHO HeKOTopoe BeKTopHoe nOJIe F = Pi+Qj+Rk, rAe P(x, y, z}, Q(x, y, z}, R(x, y, z} - HenpepblBHO AHq,q,epeHIIHpyeMble B 06JIacTH n q,YHKIIHH. IIycTb Sen - rJIa,n;KaH opHeHTHpyeMaH nOBepxHoCTb, Ha KOTOPOit BbI6paHa onpe,!l;eJIeHHaH CTopOHa, 3aAaaaeMaH e,!I;HHH'IHOit HOPMaJIbIO n(cosa,cosi3, cos')'}K STOit nOBepXHOCTH.

~ IIomo'ICoM 6e'ICmOp'H.020 no.l!J! F 'tepe3 n06epX'H.OCm'b S 6 'H.anpa6.11e'H.UU eaU'H.U't'H.o11. 'H.OPMa.IIU n Ha3bIBaIOT nOBepXHocTHblit HHTerpaJI rrepBoro pOAa:

II = jjF. ndS = jj(Pcosa + Qcosi3 + Rcos')'}dS.

(3.1)

s

s

~

ECJIH 0603Ha'lHTb'1epe3Fn npoeKIIHIO BeKTopa F Ha HanpaBJIeHHe BeKTopa n, TO, Y'lHTbIBaH,'ITOHMeeT MeCTO paaeHCTBO F . n = IFI . Inl COS t.p = IFI . COS t.p = Fn

(rAe t.p - yrOJI Me:lKAY BeKTopaMH F H n), q,OpMyJIy MH BbI'IHCJIeHHHnOTOKa MO:lKHO 3arrHcaTb B q,opMe, KOTopaH He 3aBHCHT OT Bbl60pa CHCTeMbI KoopAHHaT:

TIoBepxHocTHbIiI: HHTerparr rrepBOrO pO,!l;a B <p0pMYJIe (3.1) CBH3aH C rrOBepXHOCTHhIM HHTerparrOM BToporo pO,!l;a paBeHCTBOM:

II= !!(P cos cr + Qcos(3 + Rcos")')dS = !!Pdydz+Qdzdx+Rdxdxy, (3.2)

S

(S,n)

KOTopoe ,!I;aeT ellIe O,!l;HH crroco6 BhI'IHC.JIeHHHrrOTOKa.

t1>u3u'teC'lCuit CM'btC.II

nomo'ICa: eC.JIH BeKToP-<PYHKD;HH F eCTb rrOJIe CKopocTeil:

TeKYllIeil: lKH,!I;KOCTH, TO

rrOTOK II 3Toro BeKTopHoro rrOJIH '1epe3 rrOBepXHOCTb S

paBeH 0611IeMY KOJIH'IeCTBYlKH,!I;KOCTH, rrpOTeKaIOllIeil: '1epe3S 3a e,!l;HHHD;y BpeMeHH.

IlcrroJIb3YH rrOHHTHe rrOTOKa, MOlKHO rrOHHTb ljju3U'teC'lCuit CM'btC.II nomo'ICa (CM. TaKlKe 3a,!1;a'lY5.3.39). )J;HBepreHD;HH BeKTopHoro rrOJIH F B TO'lKeM eCTb rrpe,!l;e.Jl OTHomeHHH rrOTOKa rrOJIH '1epe3c<pepy S ,!I;OCTaTO'lHOMarroro pa,!l;Hyca, OKpYlKaIOIu:yIO TO'lKYM, K 06'beMYV mapa, OrpaHH'IeHHOrO3TOil: c<pepoil:, rrpH CTpeMJIeHHH

,!I;HaMeTpa d mapa K HYJIIO: div F = !~~!!Fn . dS

S

(J)0pMyna raycca-OCTpOrpaACKOrO

TeopeMa 5.1 (OcTporpaAcKllliii). nYCTb S - 3aMKHYTal'l rllaAKal'l Opl'leHHlpyeMal'lnOBepXHOCTb, l'IBlll'llOl.I.Ial'lCl'IrpaHI'I~eA Tella V 1'1 n(coscr, cos (3, cos")')- eAI'I- HI'IYHal'lBHeWHl'Il'IHopMallb K S. nyCTb BeKTopHoe nOlle F(P, Q, R) - HenpepblBHO

Al'lcI>cI>epeH~l'IpyeMo Ha S 1'1 B V. TorAa

!!(P cos cr + Qcos(3 + Rcos")')dS = !!!(~~ + ~~ + ~~) dV. (3.3)

S v

BhIpalKeHHe, CTOHllIee rro,!l; 3HaKOM HHTerparra B rrpaBoil: '1aCTHpaBeHCTBa (3.3), rrpe,!l;CTaBJIHeT co6oil: ,!I;HBepreHD;HIO BeKTopHoro rrOJIH F, HHTerparr, CTOHIlIHiI: C.JIeBa, rrpe,!l;CTaBJIHeT co6oil: rrOTOK BeKTopHoro rrOJIH F '1epe3rrOBepXHOCTb S B HarrpaBJIeHHH BHemHeil: HopMarrH. TI03TOMY <p0pMYJIa (3.3) MOlKeT 6hITb rreperrHcaHa B BH,!I;e:

!!F.ndS =I!!divFdV.

S

v

EC.JIH HCrrOJIb30BaTb orrepaTOp raMH.JIbTOHa, TO <popMYJIa raycca-OCTpOrpa,!l;CKOrO

(3.3) MOlKeT 6hITb 3arrHcaHa B C.JIe,!l;yIOllIeil: <p0pMe:

!!F.ndS= !!!V.FdV.

S

v

<l>0PMYJIY raycca-ocTpOrpa,!l;CKoro

'1aCTO rrpHMeHHIOT ,!I;.JIH BhI'IHC.JIeHHH rrOTOK3

BeKTopHoro rrOJIH '1epe33aMKHYTYIO rrOBepXHOCTb S. O,!l;HaKO C.JIe,!l;yeT HMeTb B BH-

,!I;y, 'ITO,!I;.JIH rrpHMeHeHHH 3Toil: <P0PMYJIhI Heo6xo,!l;HMO, '1To6hIBeKTopHoe rrOJIe 6hIJIO HerrpephIBHo ,!I;H<p<pepeHD;HPyeMhIM BHyTpH rroBepxHocTH S. 2ho YC.JIOBHe Bcer,!l;3

248

x + y -
!!F.ndS = !!OdS = O.
m(l, 2, 3).

6y.n;eT BhIIIOJIHeHO, eCJIH 06JIacTb 11, B KOTOPOtl: paccMaTpHBaeTCH IIOBepXHOCTb S,

npOCmpaHCm6e'H.'H.O OiJ'H.OC6S13HCJ.H:

~ 06JIacTb 11 C ]R3 Ha3hIBaeTCH npOCmpa'H.Cm6e'H.'H.O OiJ'H.OC6S13'H.011., eCJIH H3 TOrO,

'ITO3aMKHYTaH IIOBepXHOCTb S JIelKHT B 11, CJIe.n;yeT, 'ITOTeJIO V, rpaHHu;etl: KOTo-

pom HBJIHeTCH IIOBepXHOCTb S, TOlKe JIelKHT B 11. $

5.3.1. BbI'IHCJUITbnOTOK BeKTOpHOrO nOJHI F(P, Q, R) '1epe3nOBepXHOCTb

S B CTOpOHy, Onpe,!l;eJIaeMYIO BeKTOpOM e,!l;HHH'IHOitHOPMa.JlH n K

 

nOBepXHOCTH S, eCJIH:

 

 

a) F(4, -5,2), a S - '1acTbnJIOCKOCTH x + 2y + 3z = 6, pacnOJIO-

 

)l{eHHM B OKTaHTe x ~ 0, y ~ 0, z ~ 0, n

06pa3yeT OCTPhIit yrOJI C

 

OCblO OZj

 

x + y - z = 0, pacnoJIo-

 

6) F(O, y, 0), S -

'1acTbnJIOCKOCTH 1 -

 

)l{eHHM B OKTaHTe x ~ 0, y ~ 0, z ~ 0, a n 06pa3yeT OCTPblit yroJI

 

C OCblO Oz;

'1acTbnapa60JIOH,!l;a z = x 2 + y2, y,!l;OBJIeTBOpa-

 

B) F(I, 1, z), S -

a

IOID;M YCJIOBHIO z ~ 1, an - BHeIIIHaa HOPMa.Jlb K napa60JIOH,!l;y.

a) XOPOIIIO H3BeCTHO, 'ITOHOPMa.JlbHbIM BeKTopOM K nJIOCKOCTH aBJIaeT-

ca BeKTOp, KOOp,!l;HHaTbI KOToporo CYTb K09cPqmIJ:HeHThI npH HeH3BeCTHhIX B

ypaBHeHHH nJIOCKOCTH. B HaIIIeM CJIy'lae9TO BeKTOp TIOCKOJIbKy F = 1· 4 + (-5) + 3·2 = 0, TO HOPMa.Jlb m K nJIOCKOCTH, (a, 3Ha'lHT, H e,!l;HHH'IHMHOPMa.Jlb n K 9Toit nJIOCKOCTH) nepneH,!l;HKyJIapHa BeKTopHOMY rrOJIIO. Ho TOr,!l;a

8

8

 

6) BbI'IHCJIHMnOTOK BeKTopHoro nOJIa C nOMOID;blO nOBepXHOCTHoro HH-

Terpa.Jla II pO,!l;a (cP0pMYJIa (3.2»

 

 

II = !!Pdydz + Qdzdx + Rdxdxy =

!!ydzdx

(8,n)

 

(8,n)

(B HaIIIeM CJIy'laeP = R = 0, Q = y). ,I1;JIa BbI'IHCJIeHHanOCJIe,!l;HerO HHTerpa.Jla H306pa3HM Ha '1epTe)l{enOBepXHOCTb S (pHC. 53) H ee npOeKIJ:HIO Dxz

Ha nJIOCKOCTb Oxz (pHC. 54)

HOPMa.Jlb n K nJIOCKOCTH 1 - z = 0, o6pa3YIOID;aa OCTPblit yroJI C OCblO 0 z, 06pa3yeT Tynoit yroJI C OCblO Oy (9TO O'leBH,!l;HOH3 '1epTe)KajO,!l;HaKO HeCJIO)l{HO nOKa3aTb, 'ITOH~HylO CTOPOHY nOBepXHOCTH S 3a,!l;aeT e,!l;HHH'IHM

HOPMa.Jlb n (.]a, -.]a, .]a); 3,!l;eCb COS'Y> 0, a

cos (3

< 0, CJIe,!l;OBaTeJIbHO,

n o6pa3yeT OCTPblit yrOJI C OCblO 0 Z H Tynoit -

C OCblO Oy). TI09TOMY rrpH

CBe,!l;eHHH nOBepXHOCTHoro HHTerpa.Jla K ,!l;BOitHOMY no

06JIaCTH Dxz nepe,!l;

249