Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ЭВМ лекции

.pdf
Скачиваний:
61
Добавлен:
08.05.2015
Размер:
2.95 Mб
Скачать

виртуальной реальности, распространяться в виде управляющих сигналов устройства автоматики, передаваться в виде электрических сигналов по сети.

 

 

 

 

Устройства вывода

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Графической информации

 

Звуковой информации

 

 

Управляющей информации

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Монитор

 

 

Колонки

 

 

Устройства связи

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Принтер

 

 

Телефон

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Плоттер

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Проектор

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 26. 2 Классификация устройств вывода

Монитор (дисплей) является основным устройством вывода графической информации. По размеру диагонали экрана выделяют мониторы 14-дюймовые, 15-дюймовые, 17-дюймовые, 19-дюймовые, 21-дюймовые. Чем больше диагональ монитора, тем он дороже. По цветности мониторы бывают монохромные и цветные. Любое изображение на экране монитора образуется из светящихся разными цветами точек, называемых пикселями (это название происходит от PICture CELL - элемент картинки). Пиксель это самый мелкий элемент, который может быть отображен на экране. Чем качественнее монитор, тем меньше размер пикселей, тем четче и контрастнее изображение, тем легче прочесть самый мелкий текст, а значит, и меньше напряжение глаз. По принципу действия мониторы подразделяются на мониторы с электронно-лучевой трубкой (Catode Ray Tube - CRT) и жидкокристаллические - (Liquid Crystal Display - LCD).

В мониторах с электронно-лучевой трубкой изображение формируется с помощью зерен люминофора вещества, которое светится под воздействием электронного луча. Различают три типа люминофоров в соответствии с цветами их свечения: красный, зеленый и синий. Цвет каждой точки экрана определяется смешением свечения трех разноцветных точек (триады), отвечающих за данный пиксель. Яркость соответствующего цвета меняется в зависимости от мощности электронного пучка, попавшего в соответствующую точку. Электронный пучок

241

формируется с помощью электронной пушки. Электронная пушка состоит из

нагреваемого при прохождении электрического тока проводника с высоким удельным электрическим сопротивлением, эмитирующего электроны покрытия, фокусирующей и отклоняющей системы.

При прохождении электрического тока через нагревательный элемент электронной пушки, эмитирующее покрытие, нагреваясь, начинает испускать электроны. Под действием ускоряющего напряжения электроны разгоняются и достигают поверхности экрана, покрытой люминофором, который начинает светиться. Управление пучком электронов осуществляется отклоняющей и фокусирующей системой, которые состоят из набора катушек и пластин,

воздействующих на электронный пучек с помощью магнитного и электрического полей. В соответствии с сигналами развертки, подаваемыми на электронную пушку, электронный луч побегает по каждой строчке экрана, последовательно высвечивая соответствующие точки люминофора. Дойдя до последней точки, луч возвращается к началу экрана. Таким образом, в течение определенного периода времени изображение перерисовывается. Частоту смены изображений определяет частота горизонтальной синхронизации. Это один из наиболее важных параметров монитора, определяющих степень его вредного воздействия на глаза.

В настоящее время гигиенически допустимый минимум частоты горизонтальной синхронизации составляет 80 Гц, у профессиональных мониторов она составляет

150 Гц.

Мониторы с электронно-лучевой трубкой имеют специальное антибликовое покрытие, уменьшающее отраженный свет окон и осветительных приборов. Кроме того, монитор покрывают антистатическим покрытием и пленкой, защищающей от электромагнитного излучения. Дополнительно на монитор можно установить защитный экран, который необходимо подсоединить к заземляющему проводу, что также защитит от электромагнитного излучения и бликов. Уровни излучения мониторов нормируются в соответствии со стандартами LR, MPR и MPR-II.

Жидкокристаллические мониторы имеют меньшие размеры, потребляют меньше электроэнергии, обеспечивают более четкое статическое изображение. В

242

них отсутствуют типичные для мониторов с электронно-лучевой трубкой искажения. Принцип отображения на жидкокристаллических мониторах основан на поляризации света. Источником излучения здесь служат лампы подсветки, расположенные по краям жидкокристаллической матрицы. Свет от источника света однородным потоком проходит через слой жидких кристаллов. В зависимости от того, в каком состоянии находится кристалл, проходящий луч света либо поляризуется, либо не поляризуется. Далее свет проходит через специальное покрытие, которое пропускает свет только определенной поляризации. Там же происходит окраска лучей в нужную цветовую палитру.

Жидкокристаллические мониторы практически не производят вредного для человека излучения.

Для получения копий изображения на бумаге применяют принтеры, которые классифицируются:

по способу получения изображения: литерные, матричные, струйные, лазерные и термические;

по способу формирования изображения: последовательные, строчные, страничные;

по способу печати: ударные, безударные; по цветности: чёрно-белые, цветные.

Наиболее распространены принтеры матричные, лазерные и струйные принтеры. Матричные принтеры схожи по принципу действия с печатной машинкой. Печатающая головка перемещается в поперечном направлении и формирует изображение из множества точек, ударяя иголками по красящей ленте.

Красящая лента перемещается через печатающую головку с помощью микроэлектродвигателя. Соответствующие точки в месте удара иголок отпечатываются на бумаге, расположенной под красящей лентой. Бумага

перемещается в продольном направлении после формирования каждой строчки изображения. Полиграфическое качество изображения, получаемого с помощью матричных принтеров низкое и они шумны во время работы. Основное достоинство матричных принтеров - низкая цена расходных материалов и невысокие требования к качеству бумаги.

243

Струйный принтер относится к безударным принтерам. Изображение в нем формируется с помощью чернил, которые распыляются через капилляры печатающей головки.

Лазерный принтер также относится к безударным принтерам. Он формирует изображение постранично. Первоначально изображение создается на фотобарабане, который предварительно электризуется статическим электричеством. Луч лазера в соответствии с изображением снимает статический заряд на белых участках рисунка. Затем на барабан наносится специальное красящее вещество тонер, который прилипает к фотобарабану на участках с неснятым статическим зарядом. Затем тонер переносится на бумагу и нагревается. Частицы тонера плавятся и прилипают к бумаге.

Для ускорения работы, принтеры имеют собственную память, в которой они хранят образ информации, подготовленной к печати.

К основным характеристикам принтеров можно относятся:

-ширина каретки, которая обычно соответствую бумажному формату А3 или А4;

-скорость печати, измеряемая количеством листов, печатаемых в минуту;

-качество печати, определяемое разрешающей способностью принтера - количеством точек на дюйм линейного изображения. Чем разрешение выше, тем лучше качество печати.

-расход материалов: лазерным принтером - порошка, струйным принтером

-чернил, матричным принтером - красящих лент.

Плоттер (графопостроитель) – это устройство для отображения векторных изображений на бумаге, кальке, пленке и других подобных материалах. Плоттеры снабжаются сменными пишущими узлами, которые могут перемещаться вдоль бумаги в продольном и поперечном направлениях. В пишущий узел могут вставляться цветные перья или ножи для резки бумаги. Графопостроители могут быть миниатюрными, и могут быть настолько большими, что на них можно вычертить кузов автомобиля или деталь самолета в натуральную величину.

244

Общие принципы организации ввода-вывода Для большинства ЭВМ можно выделить следующие общие принципы:

Передача данных осуществляется по общей системной магистрали (что характерно для микроЭВМ) либо по специальной магистрали ВВ (что характерно для мини- и больших ЭВМ). Иногда отдельная быстродействующая магистраль ВВ выделяется только для обмена в режиме ПДП.

Подключение ПУ к системному интерфейсу осуществляется с помощью промежуточного интерфейса, поддерживаемого со стороны микроЭВМ

иПУ соответствующими адаптерами.

Операции ВВ инициируются только в случае готовности ПУ к обмену. При наличии нескольких ПУ и обмене в режиме прерывания или ПДП вводится система приоритетов, позволяющая избежать конфликтов. В соответствии с этой системой контроллер прерываний или ПДП среди ПУ, готовых к обмену, в первую очередь обслуживает ПУ с высшим приоритетом.

Передача данных осуществляется двумя способами:

-отдельными битами (по последовательному интерфейсу);

-полными словами (например, целым байтом) (по параллельному интерфейсу).

Информация, передаваемая в процессе ВВ, подразделяется:

-на собственно данные (обозначим D);

-управляющие данные (обозначим U).

Управляющие данные от процессора называются также командными словами или приказами. Они инициируют действия, не связанные непосредственно с передачей данных (запуск устройства, запрещение прерываний, установка режимов и т.д.).

Управляющие данные от ПУ называются словами состояния. Они содержат информацию об определенных признаках (о готовности устройства к передаче данных, о наличии ошибок при обмене и т.д.). Состояние обычно представляется в декодированной форме один бит для каждого признака.

Программная модель адаптера промежуточного интерфейса (ППУ), связывающего системную магистраль микроЭВМ и внутреннюю магистраль ПУ,

245

представлена на рис. 26.1. Каждый из указанных регистров должен иметь адрес, который может идентифицироваться дешифратором адреса.

Системная магистраль микроЭВМ

Рг U

состояния

Рг U

управления

Адаптер проме-

Блок

жуточного интер-

управления

фейса (ППУ)

 

 

(Внутренняя магистраль ПУ)

Порт ввода

Рг D

ввода

К линиям

промежуточного

интерфейса

Рг D

вывода

Порт вывода

ПУ периферийное устройство; ППУ приёмопередающее устройство

Рис. 26. 3 Обобщенная программная модель приемопередающего устройства

Возможны два способа организации операций ВВ.

Изолированный ВВ (соответствует структуре с изолированными шинами) предполагает наличие специальных команд ВВ. В МП 8086 и совместимых это команды IN и OUT. Адресное пространство регистров ППУ изолировано от адресного пространства ячеек памяти, т.е. регистры ППУ и ячейки памяти могут иметь одинаковый адрес. Команды IN и OUT – двухбайтовые. Первый байт КОП, а второй несет информацию о номере адресуемого ППУ и номере адресуемого в нем регистра. При этом в микропроцессоре предусмотрена возможность обмена данными по командам IN, OUT только между аккумулятором и адресуемыми регистрами.

ВВ по общей шине (соответствует структуре с общими шинами)

В этом случае адресация к регистрам ППУ осуществляется как к обычным ячейкам памяти, т.е. ячейки памяти и регистры ППУ имеют единое адресное пространство. Можно использовать все команды обращения к ячейкам памяти. Это удобно, однако часть адресного пространства памяти используется для адресации регистров ППУ, что может вызвать трудности, если программа большая и много ПУ.

246

ПУ и микроЭВМ могут обмениваться достаточно большими объемами информации, которые невозможно поместить только в регистрах процессора.

Ввиду этого часто операции ВВ являются операциями обмена данными между ОП и ПУ.

Для повышения гибкости всей вычислительной системы в микроЭВМ возможно использование одного из трех режимов выполнения операций ВВ.

Программный ВВ (нефорсированный).

ВВ по прерыванию (форсированный).

Прямой доступ к памяти (ПДП).

Реализация ВВ в каждом из этих режимов отличается программно- аппаратными затратами и, самое важное, скоростью выполнения операций обмена и непроизводительными затратами времени процессора.

Программный ВВ. Инициирование и управление ВВ осуществляет процессор по командам прикладной программы. ПУ играют пассивную роль и только сигнализируют о своем состоянии, в частности о готовности к операциям ВВ.

Программный ввод-вывод. В этом режиме все действия, связанные с операциями ВВ, реализуются командами прикладной программы, причем возможны два вида обмена синхронный и асинхронный, которые целесообразно использовать в различных ситуациях.

Синхронный ВВ можно использовать для связи с ПУ, которые "всегда готовы", например светодиодные индикаторы, либо для ПУ, в которых известно точно время выполнения операций, например, максимальное время, необходимое для печати одного знака.

В первом случае команды ВВ ставятся в произвольных точках программы. Во втором случае программа должна быть составлена так, чтобы команды на обмен шли с интервалами не меньшими, чем время выполнения одной операции обмена (т.е. максимальное время выполнения операции в ПУ).

Это наиболее простой вид обмена, требующий минимум программно- аппаратных затрат (он называется еще безусловным ВВ). Однако при работе с

247

медленными ПУ, как правило, не удается оптимальным образом загрузить процессор на период времени между пересылками данных.

Асинхронный ВВ подразумевает, что интервал между операциями обмена задается самим ПУ. Информацию о готовности ПУ к операциям обмена процессор получает периодически, анализируя содержимое регистра состояния ППУ, поэтому процесс обмена состоит из двух фаз:

-проверки готовности ПУ к обмену;

-реализации непосредственно операций ВВ.

Первая фаза обмена в большинстве случаев реализуется путем циклического вызова содержимого регистра состояния ППУ в аккумулятор, сравнения его с некоторой маской и анализа полученного результата, т.е. происходит реализация цикла ожидания готовности ПУ. На реализацию цикла ожидания затрачивается время, иногда весьма значительное. Это является существенным недостатком такого вида обмена, поскольку в период ожидания процессор не может выполнять полезной работы, т.е. фактически простаивает.

ВВ по прерыванию. Операции ВВ инициирует ПУ, генерируя сигнал запроса прерывания, при этом процессор переключается на подпрограмму обслуживания данного ПУ, вызвавшего прерывание. В результате выполнения подпрограммы (обработчика) осуществляется обмен данными. Действия, выполняемые обработчиком, определяются пользователем, а непосредственно операциями ВВ управляет процессор.

Для сокращения непроизводительных потерь времени процессора за счет циклов ожидания при программном обмене, т.е. когда процессор не может заниматься ничем, кроме программы ВВ, используют обмен по прерыванию.

При готовности к обмену ПУ посылает в процессор запрос на обслуживание сигнал INT (запрос прерывания). Этот сигнал появляется в произвольные моменты времени, а, следовательно, и в произвольной точке текущей программы. Поскольку заранее неизвестно, в какой точке программы и какие ПУ инициируют прерывания, непосредственно в программе команды ВВ использовать нельзя.

248

Для микроЭВМ, построенной на базе МП 8086, эта последовательность выглядит следующим образом:

1.Контроллер ПУ или адаптер промежуточного интерфейса генерирует сигнал запроса прерывания, который подается на вход INT процессора непосредственно (если ПУ одно) или через контроллер прерываний (если ПУ много) в виде общего сигнала прерывания.

2.При наличии нескольких ПУ в контроллере прерывания осуществляется идентификация прерывающего устройства (т.е. выясняется, откуда поступил сигнал INT, и его приоритет).

3.Процессор завершает текущую команду и, если прерывание разрешено, формирует сигнал INTA (подтверждение прерывания), который выдается во внешнюю цепь (в частности, в системный контроллер), а также сбрасывает внутренний триггер разрешения прерываний, состояние которого идентифицируется сигналом INTE.

4.Содержимое PC (счетчик команд) автоматически запоминается в

стеке.

5.Происходит переход к подпрограмме обслуживания данного ПУ (обработчику), при этом выполняются следующие операции:

- запоминание состояния прерванной программы, которое должно быть предусмотрено пользователем, т.е. составителем подпрограммы (это слово состояния процессора PSW, а также содержимое РОН, используемых в подпрограмме обслуживания прерывания); обычно для запоминания используют стек. В ряде современных процессоров PSW автоматически сохраняется в стеке, как и содержимое счетчика PC;

- выполнение собственно программы обслуживания процесса ВВ; - восстановление состояния прерванной программы (т.е. извлечение и

загрузка в соответствующие регистры PSW и содержимого РОН из стека).

6.Возобновляется выполнение прерванной программы по команде RET, являющейся обязательной последней командой обработчика.

Реакция процессора на прерывание очень похожа на вызов подпрограммы, несмотря на то, что обращение к подпрограмме происходит в фиксированных

249

точках программы, а прерывания возникают в случайных точках программы.

Однако внешняя аналогия реакции на прерывание и вызов подпрограммы позволяют считать прерывание аппаратным вызовом подпрограммы (с помощью сигнала INT).

Поскольку сигнал на вход INT может поступить в произвольной точке программы, процессору необходимо проверять наличие сигнала запроса прерывания до перехода к следующей команде. В МП анализ входа INT осуществляется в одном такте последнего машинного цикла каждой команды.

Действия процессора по обслуживанию запросов прерывания можно пояснить следующим упрощенным алгоритмом.

Начало

Программа

завершилась

нет

Выборка команды

Дешифрация и вы-

полнение команды

Анализ входа INT

да

Конец

 

Инкремент

 

 

 

 

 

счетчика команд

 

Запрос есть

нет

 

 

 

 

 

да

 

 

 

Опрос триггера раз-

 

 

 

решения прерывания

 

 

Прерывание

нет

Инициирование и

 

 

обслуживание

 

разрешено

 

 

 

прерывания

 

 

 

 

да

 

 

Рис. 26.4 Упрощенный алгоритм обслуживания прерывания

Внутренний триггер разрешения прерываний INTE называется также маской прерывания. Состояние этого триггера идентифицирует сигнал с такой же мнемоникой. Если INTE = 0, то прерывания запрещены (замаскированы) и процессор не реагирует на сигнал INT = 1. Этот триггер управляется программно с помощью команд EI (разрешение прерывания) и DI (запрещение прерывания).

250

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]