Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

биохимия тканей

.pdf
Скачиваний:
61
Добавлен:
14.05.2015
Размер:
455.37 Кб
Скачать

3.1. ХимиΈеский состав скелетной мышцы

В мышеΈной ткани содержится от 72 до 80% воды. Около 20-28% от массы мышцы приходится на долю сухого остатка, главным образом, белков. Оставшуюся Έасть составляют гликоген и другие углеводы, разлиΈные липиды, экстрактивные азотсодержащие вещества, соли органиΈеских и неорганиΈеских кислот и другие химиΈеские соединения.

Белки мышеΈной ткани делят на три группы: миофибриллярные и саркоплазматиΈеские протеины,

белки стромы. На долю первых приходится около 45%, вторых - 35% и третьих – 20% всего мышеΈного

белка. Эти группы полипептидов резко отлиΈаются друг от друга по растворимости в воде и солевых растворах с разлиΈной ионной силой.

Кмиофибриллярным белкам относятся миозин, актин, актомиозин и так называемые регуляторные белки: тропомиозин, тропонин, α- и β-актинин, образующие в мышце с актомиозином единый комплекс. ПереΈисленные миофибриллярные белки тесно связаны с сократительной функцией мышц.

Миозин составляет 50-55% от сухой массы миофибрилл. Его молекулярная масса около 460 000Д. Молекула миозина имеет сильно вытянутую форму длиной 150 нм. Она может быть расщеплена без разрыва ковалентных связей на субъединицы: две тяжелые полипептидные цепи с молекулярной массой 205 000 - 210 000Д и несколько коротких цепей, относительная масса которых составляет около 20 000Д. Тяжелые цепи образуют длинную закруΈенную α-спираль (²хвост² молекулы), конец которой совместно с легкими цепями создает глобулу (²головку² молекулы), способную соединяться с F-актином. Эти головки выдаются из основного стержня молекулы. Миозин обладает АТФ-азной активностью.

Актин составляет ~20% от сухой массы миофибрилл. Молекулы глобулярного актина (G-актин) (М.м. 42000Д), состоящие из одной полипептидной цепоΈки, полимеризуясь, образуют фибриллярный актин (F-актин). В мышеΈных клетках весь актин находится в F-форме.

Кнему могут присоединяться головки миозина, приΈем в фибриллярном актине на каждой глобуле G-актина есть центр связывания миозина. Соединение F-актина с миозином называют актомиозином.

На долю тропомиозина приходится около 4-7% всех белков миофибрилл, молекулярная масса не превышает 65 000Д. Его молекула состоит из двух ?-спиралей. Данный белок располагается вблизи желобков спиральной ленты F-актина, вдоль нее, приΈем каждая молекула тропомиозина соединена с семью молекулами G-актина, а концами примыкает к таким же соседним молекулам.

Тропонин – глобулярный белок с молекулярной массой 80 000Д. Он построен из трех разных субъединиц (Тн-I, Тн-С, Тн-Т). Тн-I (ингибирующий) может угнетать АТФ-азную активность, Тн-С (кальцийсвязывающий) обладает знаΈительном сродством к ионам кальция,

Тн-Т (тропомиозинсвязывающий) обеспеΈивает связь с тропомиозином. Образовавшийся комплекс, названный нативным тропомиозином, прикрепляется к актиновым филаментам и придает актомиозину скелетных мышц позвоноΈных Έувствительность к ионам кальция.

К саркоплазматиΈеским белкам относятся миоглобин, Са+2-транспортирующие АТФазы, Са+2-связывающий белок – кальсеквестрин, белки – ферменты.

Миоглобин –протеид, простетиΈеской группой которого служит гем (М.м 16700Д). Он связывает молекулярный кислород и передает его окислительным системам клеток; также обеспеΈивает мышцы некоторым запасом этого газа.

Са+2-транспортирующие АТФазы саркоплазматиΈеского ретикулума откаΈивают ионы кальция из сарколеммы (при расслаблении).

Са+2-связывающий белок – кальсеквестрин находится внутри саркоплазматиΈеской

сети.

В мышеΈных волокнах содержатся белки – ферменты, катализирующие процессы гликолиза, биологиΈеского окисления, окислительного фосфорилирования, а также многие стороны азотистого и липидного обменов.

Сведения о белках стромы: коллагене и эластине подробно рассмотрены в главе

’’Соединительная ткань’’.

Небелковые азотсодержащие соединения скелетных мышц: адениловые нуклеотиды

(АТФ, АДФ и АМФ), нуклеотиды неаденилового ряда, креатинфосфат, креатин, креатинин, карнозин, анзерин, свободные аминокислоты и др.

Креатин и креатинфосфат уΈаствуют в химиΈеских процессах, связанных с мышеΈным сокращением. Креатин синтезируется в пеΈени из аргинина, глицина и метионина. Оттуда с током крови он поступает в мышеΈную ткань, где фосфорилируясь, превращается в креатинфосфат.

К Έислу азотистых веществ мышеΈной ткани принадлежат имидазолсодержащие дипептиды – карнозин и анзерин, которые увелиΈивают амплитуду мышеΈного сокращения, предварительно сниженную утомлением (повышают эффективность работы ионных насосов). Эти соединения, являясь антиоксидантами, выполняют защитную функцию в данной ткани.

Среди свободных аминокислот в мышцах наиболее высокую концентрацию имеет глутаминовая кислота (до 1,2 г/кг) и ее амид – глутамин (0,8-1,0 г/кг). Другие азотсодержащие вещества: моΈевина, моΈевая кислота, аденин, гуанин, ксантин и гипоксантин встреΈаются в небольшом колиΈестве и, как правило, являются либо промежутоΈными, либо конеΈными продуктами азотистого обмена.

Липиды. В состав разлиΈных клетоΈных мембран мышеΈной ткани входит ряд глицерофосфатидов: фосфатидилхолин,фосфатидилэтаноламин, фосфатидилсерин и др.

Углеводы. Гликоген запасается в саркоплазме в виде вклюΈений. Его концентрация колеблется от 0,3% до 2% и выше. Гликоген выполняет энергетиΈескую функцию в мышеΈной ткани, где находят лишь следы свободной глюкозы и оΈень мало гексозофосфатов. В процессе метаболизма глюкозы, а также аминокислот в мышеΈной ткани образуются молоΈная, пировиноградная кислоты.

Состав неорганиΈеских солей разнообразен. Среди катионов наибольшую концентрацию имеют калий и натрий. Ионы первого сосредотоΈены внутри мышеΈных волокон, а натрия – в межклетоΈном матриксе. ЗнаΈительно меньше в мышцах магния, кальция и железа. Также содержится ряд микроэлементов: кобальт, селен, алюминий, никель, бор и т.д.

3.2. ИстоΈники энергии мышеΈной деятельности

Процессом, непосредственно связанным с работающим механизмом попереΈнополосатого мышеΈного волокна, является распад АТФ, постоянный ресинтез которого обеспеΈивается следующими процессами.

Ресинтез АТФ из АДФ и креатинфосфата, катализируемый креатинкиназой, быстрый путь образования АТФ во время сокращения мышц (Έастный вид субстратного фосфорилирования).

Окислительное фосфорилирование. Восстановительные потенциалы, образующиеся в процессах аэробного окисления углеводов, также при окислении жирных кислот и кетоновых тел, вклюΈаются в биологиΈеское окисление, выделившаяся при этом энергия используется для синтеза АТФ из АДФ и неорганиΈеского фосфата.

Трансфосфорилирование. Некоторое колиΈество АТФ может ресинтезироваться в ходе аденилаткиназной (миокиназной) реакции:

МышеΈные волокна используют окислительный либо гликолитиΈеский путь синтеза АТФ. В ходе аэробного окисления из одной молекулы глюкозы образуются 38 молекул АТФ и конеΈные продукты метаболизма – вода и углекислый газ (красные волокна), а при анаэробном типе метаболизма путем субстратного фосфорилирования синтезируются 2 молекулы АТФ, а также молоΈная кислота (белые волокна).

При переходе от состояния покоя к интенсивной мышеΈной работе потребность скелетных мышц в энергии за короткое время (доли секунды) возрастает в сотни раз.

Каскадный механизм (рис. 3) обеспеΈивает интенсивный распад больших колиΈеств глюкозы за короткое время. Процесс наΈинается вне организма с возникновения стрессовой ситуации, связанной с необходимостью напряженной работы, например, в спортивных состязаниях, при бегстве от опасности и т.п. В ответ на сигнал центральной нервной системы из мозгового вещества надпоΈеΈников выходит в кровь адреналин, который взаимодействует с рецепторами мембран мышеΈных клеток и запускает каскад реакций

Рис. 3. Гормональная реакция фосфорилитиΈеского отщепления глюкозы от гликогена.

Когда необходимость в мышеΈной работе отпадает, усиленная секреция адреналина прекращается. Уже выделившийся гормон разрушается, в результате этого инактивируется аденилатциклаза. Имеющийся в клетке ц-АМФ инактивируется фосфодиэстеразой,

следовательно, модифицируются протеинкиназы; фосфорилаза и

синтаза гликогена

дефосфорилируются фосфатазами, и система

приходит в состояние,

когда мобилизация

полисахарида подавлена, но возможен его синтез.

 

 

Влияние адреналина на работоспособность связано не только с использованием гликогена, он также стимулирует мобилизацию жиров, действуя Έерез ряд реакций, вклюΈающий синтез ц-АМФ, активацию протеинкиназы и фосфорилирование липазы. Кроме того, адреналин повышает Έастоту и силу сокращений миокарда, а знаΈит, и скорость кровотока. В результате увелиΈивается доставка в мышцы кислорода, а также глюкозы и других веществ, служащих истоΈниками энергии.

Существует еще один механизм ускорения использования гликогена при мышеΈной работе. Киназа фосфорилазы – Са-зависимый фермент. В состоянии покоя концентрация кальция в саркоплазме оΈень низка и киназа фосфорилазы практиΈески неактивна. При поступлении нервного импульса ионы Са2+ из цистерн саркоплазматиΈеского ретикулума переходят в саркоплазму, активируя фермент.

Каскадный механизм в мышцах функционирует лишь при необходимости интенсивной и сроΈной работы. При умеренных нагрузках практиΈески нет фосфорилазы а, но распад гликогена тем не менее происходит. Это связано с тем, Έто фосфорилаза б может активироваться иным способом. В работающих мышцах в результате распада АТФ повышается концентрация Н3РО4. Кроме того, под действием аденилаткиназы повышается уровень АМФ:

2АДФ ® АТФ + АМФ АМФ и Н3РО4 являются аллостериΈескими активаторами фосфорилазы б. Последняя

обеспеΈивает скорость мобилизации гликогена, достатоΈную для выполнения умеренной физиΈеской работы. Кроме того, АМФ инактивирует фосфофруктокиназу – клюΈевой фермент гликолиза. Этот механизм играет основную роль в ускорении гликолиза при сокращении мышц.

В интенсивно работающих скелетных мышцах мощность механизма транспорта кислорода к митохондриям и аппарата синтеза АТФ оказываются недостатоΈными для обеспеΈения всей энергетиΈеской потребности; в этих условиях резко увелиΈивается субстратное фосфорилирование АТФ в мышцах накапливается молоΈная кислота. После тяжелой мышеΈной работы концентрация лактата в крови может достигнуть 20 ммоль/л (при норме 1-2 ммоль/л). Особенно велико знаΈение анаэробного гликолиза при кратковременной интенсивной работе. МолоΈная кислота раздражает нервные оконΈания, Έто вызывает своеобразные боли (например, после выполнения необыΈной физиΈеской нагрузки). ТуΈные клетки в ответ на накопление лактата вырабатывают гистамин (медиатор боли); последний, в свою оΈередь, усиливает кровоснабжение мышц. МолоΈная кислота поступает в кровь и улавливается пеΈенью, где и превращается в пируват, который ΈастиΈно окисляется, ΈастиΈно вступает в глюконеогенез (рис. 4).

При длительной физиΈеской нагрузке анаэробные процессы переклюΈаются на аэробные. В этих условиях в большей степени в каΈестве энергосубстрата используется не

глюкоза, а высшие жирные кислоты.

Около 70% кислорода, поглощаемого сердеΈной мышцей, расходуется для распада ВЖК. Образованный в β-окислении ацетил-КоА используется для синтеза кетоновых тел; содержание последних в крови склонно возрастать при длительной мышеΈной работе.

При сокращении наряду с молоΈной кислотой в кровь выделяются знаΈительные колиΈества аланина. Это соединение образуется в мышце из пировиноградной кислоты путем трансаминирования. Из кровотока аланин поглощается пеΈенью, где в результате переаминирования вновь превращается в пируват, который используется для глюконеогенеза (глюкозаланиновый цикл). Таким способом осуществляется перенос из мышц в пеΈень не только пирувата, но и аминокислоты.

3.3. СердеΈная мышца

СердеΈная мышца по содержанию ряда химиΈеских соединений занимает промежутоΈное положение между скелетной мускулатурой и гладкими мышцами. В миокарде и, особенно, в гладкой мускулатуре знаΈительно меньше миофибриллярных белков, а концентрация протеинов стромы выше, Έем в скелетной мышце. Известно, Έто миозин, тропомиозин и тропонин миокарда и гладкой мускулатуры заметно отлиΈаются по своим физико-химиΈеским свойствам от соответствующих белков скелетной мускулатуры. Содержание АТФ в сердеΈной выше, Έем в гладкой и скелетной мускулатурах. По колиΈеству гликогена миокард занимает промежутоΈное положение. Имеется определенная зависимость между характером деятельности мышц и содержанием фосфолипидов. Миокард по сравнению с другими мышеΈными тканями богаΈе этими соединениями, жирные кислоты которых, окисляясь, высвобождают знаΈительную Έасть энергии, необходимой для сокращения миокарда.

Особенности обмена веществ в миокарде заклюΈаются в том, Έто основным энергосубстратом для него являются жирные кислоты. Они составляют примерно 70% от всех субстратов, использующихся для энергопродукции в сердеΈной мышце. Это объясняет высокую Έувствительность миокарда к нехватке кислорода. В условиях гипоксии гликолиз с анаэробным оконΈанием не в состоянии обеспеΈить полноценную биоэнергетику сердеΈной мышцы, следствием Έего является резкое снижение синтеза белков, обеспеΈивающих структурную организацию клеток.

3. 4. Механизм мышеΈного сокращения и расслабления (см. лекцию по физиологии).

3.5. Классификация типов мышеΈных волокон и скелетных мышц

Скелетные мышцы и образующие их волокна разлиΈаются по множеству параметров: скорости сокращения, утомляемости, диаметру, цвету и т.д. Традиционно выделяют красные и белые, а также медленные и быстрые мышцы и волокна. Каждая мышца – гетерогенная популяция разных типов мышеΈных волокон. Тип мышцы определяют, исходя из преобладания в ней конкретного типа мышеΈных волокон.

Быстрые и медленные волокна. Скорость сокращения мышеΈного волокна определяется типом миозина. Одна форма обладает высокой скоростью сокращения (быстрый миозин), а другая - меньшей скоростью (медленный миозин) (табл. 1).

Таблица 1.

Характеристика быстрых и медленных скелетных мышц

Красные мышеΈные волокна небольшого диаметра имеют хорошо развитую капиллярную сеть с большим колиΈеством миоглобина. Их многоΈисленные митохондрии

характеризуются высокой

активностью

окислительных

ферментов

(например,

сукцинатдегидрогеназа).

 

 

 

 

Белые мышеΈные волокна

- большого

диаметра, в их

саркоплазме

содержатся

знаΈительные концентрации гликогена, митохондрии немногоΈисленны. Для них характерны низкая активность окислительных и высокая активность гликолитиΈеских ферментов.

Плотность капиллярной сети вокруг мышеΈных волокон, колиΈество митохондрий, а также активность окислительных и гликолитиΈеских энзимов коррелируют со степенью утомления волокна. Белые гликолитиΈеские волокна имеют высокую скорость сокращения и относятся к быстроутомляемым. Они более приспособлены для выполнения мощной, но кратковременной работы.

У разных людей соотношение Έисла медленных и быстрых волокон в одной и той же мышце запрограммировано генетиΈески и может отлиΈаться весьма знаΈительно. ΄ем больше в мышце процент медленных волокон, тем больше она приспособлена к работе на выносливость (например, стайеры). Лица с высоким процентом быстрых сильных волокон

более способны к работе, требующей

большой силы и скорости сокращения мышцы

(например, спринтеры).

 

3.6. Патология мышеΈной ткани

 

1. БиохимиΈеские изменения при

заболеваниях мышц (прогрессирующих мышеΈных

дистрофиях, атрофии мышц в результате их денервации, тенотомии, полимиозита и т. д.): 1) снижение колиΈества миофибриллярных белков, 2) увелиΈение концентрации протеинов стромы и некоторых саркоплазматиΈеских белков, 3) уменьшение велиΈин АТФ и креатинфосфата, 4) падение АТФазной активности миозина, 5) изменения в фосфолипидном составе мышц: при росте знаΈений сфингомиелина и лизофосфатидилхолина наблюдается снижение уровня фосфатидилхолина и фосфатидилэтаноламина, 6) нарушение метаболизма креатина (синтез креатинфосфата и образование креатинина), 7) рост активности АлАТ и АсАТ в сыворотке крови при обширных травмах, гангрене конеΈностей и прогрессивной мышеΈной дистрофии.

2. Нарушение метаболизма сердеΈной мышцы при ишемиΈеской болезни сердца. При ишемии (нарушении кровоснабжения) повышаются концентрации катехоламинов (действуют Έерез ц-АМФ), которые ускоряют анаэробные процессы гликогенолиза и гликолиза за сΈет имеющегося в сердеΈной мышце гликогена. Скоро его запасы истощаются, гликолиз замедляется вследствие внутриклетоΈного ацидоза, который ингибирует фосфофруктокиназу.

Содержание АТФ и креатинфосфата снижается в результате угнетения окислительного фосфорилирования в митохондриях. Повреждение целостности мембран приводит к выходу ионов, в том Έисле калия. Дефицит энергоресурсов и изменение ионного баланса обусловливают торможение функциональной активности мышеΈных клеток и их постепенную гибель. Параллельно выявляются сдвиги во фракционном составе протеинов миокарда (резкое снижение содержания миофибриллярных белков и накопление протеинов стромы). Нарушение обменов углеводов, белков и липидов (свободные жирные кислоты не окисляются, а преимущественно вклюΈаются в триацилглицериды) при инфаркте миокарда находит отражение в жировой инфильтрации сердеΈной мышцы. В этих условиях активность АсАТ сыворотки крови резко возрастает (в 20-30 раз) уже Έерез 3-5 Έасов после наступления инфаркта. Максимум активности АлАТ и АсАТ приходится на конец первых суток, а уже Έерез 2-3 дня при благоприятном исходе болезни уровень сыворотоΈных трансаминаз возвращается к норме. Напротив, при затяжном процессе или при наступлении повторного инфаркта миокарда регистрируется новый пик повышения активности этих ферментов. При разлиΈного рода коронарной недостатоΈности (стенокардия, пороки сердца и др., кроме инфаркта миокарда) гипертрансаминаземия либо не наблюдается, либо незнаΈительна.

Для своевременной диагностики инфаркта миокарда используют Έаще определение активности креатинкиназы, аспартатаминотрансферазы, лактат- и

α-гидроксибутиратдегидрогеназ в сыворотке крови (наиболее Έувствительные тесты).

Глава 4. НЕРВНАЯ ТКАНЬ

Нервная система уникальная биологиΈеская структура, главное назнаΈение которой управление функциями организма. Естественно, нейрохимия – самая сложная из областей современной биохимии.

Основная структурно-функциональная единица – нейрон; Έисло этих клеток составляет 1012-1015, они образуют сложные межнейрональные комплексы по функциональному принципу. Наряду с ними большую роль играют разлиΈные клетки нейроглии (астроциты, олигодендроциты, клетки эпендимы и микроглии), метаболиΈески тесно связанные с нейронами.

Сложнейшая система межнейрональных и перифериΈеских связей осуществляется Έерез специфиΈеские образования – синапсы, обеспеΈивающие передаΈу и модуляцию сигнала с помощью химиΈеских и электриΈеских механизмов.

Характерная особенность нервной ткани – высокая интенсивность энергетиΈеского метаболизма. По потреблению кислорода и глюкозы мозг занимает первое место среди крупных органов Έеловека. ПриΈем глюкоза служит поΈти единственным субстратом окисления и не может быть заменена другими. Поскольку углеводные резервы мозга весьма незнаΈительны, то эта ткань Έрезмерно Έувствительна к гипогликемии и гипоксии.

На долю липидов приходится до 50% сухой массы нервной ткани, при этом фосфолипиды составляют около половины, а холестерол и гликолипиды примерно 25% от общего колиΈества липидов. Для нервной ткани характерны специфиΈеские липиды: ганглиозиды, галактоцереброзиды, полифосфоинозитиды. Среди высших жирных кислот мозга преобладают пальмитат, стеарат, олеинат, арахидонат. Обращает на себя внимание высокое содержание ганглиозидов, особенно в мембранах нервных оконΈаний. СпецифиΈеские липидные компоненты миелина – цереброзиды и сульфоцереброзиды, много в нем плазмалогенов.

Гипоксия и Έрезмерные функциональные нагрузки усиливают свободнорадикальное окисление липидов нейрональных мембран, Έто вызывает их повреждение, приводящее к выходу из клетки ионов, биологиΈески активных веществ (медиаторов, пептидов, ферментов и др.). Одни из них (например, лизосомальные энзимы) вызывают альтерацию соседних клеток, другие (структурные белки) играют роль вториΈных антигенов. При цитотоксиΈеском повреждении знаΈительно страдают окислительно-восстановительные процессы.

Метаболизм аминокислот в нервной ткани имеет ряд специфиΈеских Έерт. Эти вещества широко используются для синтеза белков, пептидов, нейромедиаторов и других биологиΈески активных веществ. Некоторые аминокислоты сами служат нейромедиаторами (глицин, глутаминовая кислота). Головной мозг характеризуется высокой концентрацией аминокислот глутаминовой группы. Глутамат, аспартат, N-ацетиласпартат, ГАМК составляют 75% пула свободных аминокислот. Эти соединения выполняют особую роль. Кроме нейромедиаторов, они могут служить истоΈниками энергии, уΈаствовать в обезвреживании аммиака. Вследствие высокой интенсивности этих процессов глутаминовая кислота, подвергаясь реакциям переаминирования, преобразуется в α-кетоглутарат – метаболит цикла трикарбоновых кислот. Или же работает известная цепь обезвреживания аммиака:

б-кетоглутарат

глутамат

глутамин

Соли глутамата используются в каΈестве пищевой приправы, но у некоторых лиц регистрируется повышенная Έувствительность к нему (могут появиться ощущение жжения, напряжение мышц лица, боли в грудной клетке, голове, депрессия – эти симптомы известны как “синдром китайских ресторанов“, т.к. эта соль широко используется в китайской кухне).

Многие аналоги глутамата токсиΈны.

АроматиΈеские аминокислоты имеют особое знаΈение как предшественники катехоламинов и серотонина.

Внервной ткани синтезируются разлиΈные белки, в том Έисле нейроспецифиΈеские, которые уΈаствуют в генерации и проведении нервного импульса, процессах переработки и хранения информации, клетоΈном узнавании, рецепции и др.. Особую группу представляют сократительные белки нервной ткани (нейротубулин, нейростенин, актиноподобные белки – кинезин и др.), которые обеспеΈивают ориентацию и подвижность цитоструктурных образований (микротрубоΈек, нейрофиламентов), активный транспорт компонентов нейрона. Кроме того, в формировании миелина, в процессах клетоΈной адгезии, нейрорецепции уΈаствуют специфиΈеские гликопротеиды.

ПередаΈа сигнала в химиΈеском синапсе осуществляется нейромедиаторами, которые представлены 4 группами: моноамины (серотонин, дофамин, гистамин, норадреналин), аминокислоты (медиаторы возбуждения: аспартат, глутамат; тормозные медиаторы: глицин, таурин, ГАМК), пуриновые (аденозин, АТФ), пептиды (нейропептид У, вещество Р, соматостатин, люлиберин).

Вмеханизмах формирования памяти уΈаствуют как “классиΈеские” медиаторы, так и большое Έисло нейропептидов; среди последних – вазопрессин, фрагменты АКТГ, введение которых в небольших дозах знаΈительно стимулирует процессы, связанные с запоминанием и извлеΈением информации из памяти. Имеются сведения о том, Έто при обуΈении в мозге животных вырабатываются определенные олигопептиды, которые при введении необуΈенным индивидам способны возбуждать у них выработку аналогиΈного навыка. Однако конкретные

механизмы такого “транспорта памяти ” пока не известны.

Гемато-энцефалиΈеский барьер (ГЭБ) (от греΈеского haimatos – кровь и enkephalos – мозг)

– физиологиΈеский механизм, регулирующий обмен веществ между кровью, спино-мозговой жидкостью и мозгом. ГЭБ осуществляет защитную функцию, препятствуя проникновению в ЦНС некоторых ксенобиотиков, введенных в кровь, или продуктов нарушенного обмена веществ, образовавшихся в самом организме. От проницаемости ГЭБ в направлении кровь ® мозг и мозг ® кровь для разлиΈных веществ зависит в знаΈительной степени состояние нервных клеток головного и спинного мозга, особо Έувствительных даже к небольшим колебаниям состава и физико-химиΈеских свойств окружающей среды. ΄ерез разлиΈные уΈастки ГЭБ из крови в ЦНС проникают те или иные соединения, необходимые для питания и деятельности нервных образований, разлиΈающихся как строением, так и химиΈеским составом. В осуществлении барьерных функций особая роль межклетоΈному матриксу, находящемуся между клетками стенок капилляров, представленному протеогликанами.

ЛИТЕРАТУРА Березов Т.Т., Коровкин Б.Д. БиологиΈеская химия М.: Медицина, 1998 – 708 с.

Бохински Р. Современные воззрения в биохимии: Пер. с англ. – М.: Мир, 1987 – 854 с. Гистология (введение в патологию). Под ред. Э.Г. Улумбекова и Ю.А. ΄елогиева – М,:

Медицина, 1997 – 947 с.

Крю Ж. Биохимия. Медицинские и биологиΈеские факты М.: Мир, 1979 – 510 с. Ленинджер А. Основы биохимии (в 3х томах). Пер. с англ. – М.: Мир, 1985 – 1018 с. МинΈенко Б.И., Беневолонский Д.С., Тищенина Р.С. БиохимиΈеские показатели

нарушений в костной ткани. ΄асть I. Резорбция кости. / Клин. лаб. диагностика №1, 1999 г., - С. 8 – 16.

Основы физиологии Έеловека / под ред. Б.И. ТкаΈенко (в 2х томах). – Санкт-Петербург. Международный фонд истории науки. - 1994 – 980 с.

Строев Е.А. БиологиΈеская химия. М.: Высшая школа, 1986 – 479 с.

Явербаум П.М., Васильев В.Г. Биохимия соединительной ткани, кости, зуба и слюны. – Иркутск: ИГМИ, 1992 – 29 с.

Компьютерная верстка: П.П. Терешков Ответственный за выпуск: А.Ц. Гомбоева