Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ALGEBRA_PEChAT

.docx
Скачиваний:
14
Добавлен:
28.05.2015
Размер:
76.21 Кб
Скачать

Доказательство:(1)- упорядоченная линейно-независимая система векторов => для доказательства теоремы достаточно показать , что любой вектор из векторного пространства V линейно выражается через векторы системы (1).

Для любого ū€V ; ū1, ā1, ā2, …ān (2) – линейно-зависима.

λū+λ1ā1+λ2ā2+…+λnān=Ō (3) существует не пустой набор коэффициентов.Рассмотрим коэффициент λ

Предположим , что λ=0 , тогда равенство (3) примет вид

(3) => λ1ā1+λ2ā2+…+λnān=Ō (λ1, λ2, …λn)- ненулевой набор коэффициентов.

Что невозможно т.к. (ā1, ā2….ān)- линейно-независима. Следовательно λ≠0.

(3) => ū=-λ1*ā1/λ-λ2*ā2/λ-….-λn*ān/λ (линейная комбинация)

Следовательно система векторов (1) – это базис.

Следствие: Если базис векторного прострвнства содержит n векторов , то размерность векторного пространства равна n

Подпр-во:определение,критерий примеры

Опр: Непуст подмнож-во L вект.пр-ваV наз.подпростр-ом, если относительно операций сложения и умножения на скаляр, определенных для векторного пространства V множество L в свою очередь является векторным пространством.v=<V,+,*>

Теор:(крит.подпр-ва):Непустое подмн-во L вект.пр-ва V назыв-ся его подпространством титт, когда выполн следующ условия:

1)a,bєL a+bєL. и 2)aєL ₤єP ₤a€L

Док-во:1)Дано:L-подпространство V

Доказать: 1)a,bєL a+bєL. и 2)aєL ₤єP ₤a€L

Док-во: L-подпространство=>L-векторное пространство=>L должно быть замкнутым относительно операции умножения и сложения на скаляр.

2)Дано: L-подмн-во V, 1)a,bєL a+bєL. и 2)aєL ₤єP ₤a€L

Док-ть: L-подпространство V .

Док-во:Используем опр. подпр-ва, т.е. покажем, что выполняются все аксиомы вект.простр-ва для множества L.

1) на мн-ве L задает операцию “+” , причем L замкнуто относительно этой операции.2) на мн-ве L задает операцию “*”, причем L замкнуто относительно этой операции.

Коммутат и ассоц “+” выполняется для элементов множества L, т.к. элементы этого множества являются элементами векторного пространства v. Пусть ₤=0 , тогда 0*a€L =>єL;

Пусть ₤=-1, тогда -1*a€L => -a€L; Множество L относительно операции сложения- это абелева группа(<L,+>-абелева группа). Т.к. элементы множества L в свою очередь явл-ся элементами пространства v ассоциативность умножения на скаляр и свойство дистрибутивности будет справедливо для L.

₤=1 => 1*a=a. L-это подпр-во векторного пространства v . Теор: Пусть дано некоторое пространство v и L-его подпространство, тогда размерность L не может превышать размерности v (dim L≤ dim v).

8. Линейные операторы. Матрица л.о. Собственн значен и векторы л.о

Пусть даны и

Опр: Говорят что в пространстве задан оператор А с множеством значений в пр-ве если задано правило или закон по которому каждому вектору ставится в соответствие вектор . При этом пишут . Выражение значение оператора в точке Х.

Опр: Оператор называется линейным если выполняется 1) A()= 2)

Примеры лин.оп.1) Оператор,который каждому вектору ставит в соответствие нулевой вектор является линейным оператором и называется нулевым. 2) Оператор,который каждому элементу ставит в соответствие вектор где называется оператором подобия. 3) Поворот плоскости вокруг точки О на угол α является линейным оператором пространства свободных векторов и называется оператором поворота.

Св-ва л.о 1) Всякий л.о сохраняет положение нулевого вектора. 2) Для любого л.о имеет место равенство 3) Всякий л.о переводит лин комб векторов в лин комб образов этих векторов,причем с теми же коэфф.

Теор: Всякий л.о векторного пространства однозначно определяется заданием образа некоторого фиксированного базиса данного пространства.

Док-во.Дано: -л.о. Базис . Образы базисных векторов . Док-во: Рассмотрим . Вектор определяется как . Найдем образ =

Матрица линейного оператора. Пусть линейный оператор. Базис Е состоит . Образы векторов принадлежат пространству , значит эти векторы могут быть разложены по базису Составим матрицу, столбцами которой явл коэфф разложения данных векторов по базису Е. - матрица линейного оператора А. Если размерность dim=n, то А-матрица n-ого порядка

Теор: Пусть л.о. Пусть А-матрица л.о. Базис Е . Пусть . Тогда координатный столбец образа вектора равен произведению А на корд столбец .

Док-во: Тогда по свойству (3) получим . Вынесем базисные элементы из под скобок, лямбды в скобки и наглядно получим выражение ,доказывающее что теорема верна.

Собственные значения и собств вектор

Многие ур-я к решению которых сводится решение задач прикладного характера можно записать в операторном виде (1) При некоторых уравнение (1) имеет единственное нулевое решение. При других значениях уравнение имеет ненулевое решение.

Опр: Мн-во значений параметра при которых уравнение (1) имеет ненулевое решение называют спектром л.о. А каждое отдельное значение спектра называют собсвенным значением л.о

Алгоритм нахождения собств знач л.о

1)Составить матрицу л.о если она не дана по условию

2)Составить матрицу , где Е-единичная матрица n-ого порядка.

3) Вычислить определитель

4) Решить уравнение n-ой степени . Решение данного уравнения и будет являться

Собственные векторы линейного оператора

Пусть -собственн значения л.о, т.е такие значения при которых имеет ненулевые решения.

Опр:ненулевые решения уравнения называют собственными векторами,соответствующими собственному значению

Алгоритм нахождения собственн вект л.о

1) где собственное значение

2) Составить СЛОУ

3)Находим фундаментальную систему решений

Собственные вектор-лин.оболочка векторов ФСР из которой искл нуль-вектор. Спектр называют простым если он состоит из n-разл элементов поля скаляров

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]