Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

0535089_4D90A_shpargalki_po_geodezii_bntu

.docx
Скачиваний:
54
Добавлен:
31.05.2015
Размер:
619.88 Кб
Скачать

23. ВИДЫ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ ПО ХАРАКТЕРУ ФОРМИРОВАНИЯ. ПРЕДЕЛЬНАЯ АБСОЛЮТНАЯ И ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТИ.

Наилучшим критерием оценки точности измерений принято считать среднюю квадратическую погрешность (СКП) измерения, определяемую по формуле Гаусса:

где i=li-X (Х - истинное значение измеряемой величины, а li - результат измерения).

Так как, в большинстве случаях истинное значение неизвестно, то СКП определяют по формуле Бесселя:

где i=li-х (х - средняя арифметическое значение или вероятнейшее значение измеряемой величины, а li - результат измерения).

СКП арифметической середины:

Эта формула показывает, что СКП арифметической середины в n раз меньше СКП отдельного измерения.

На практике различают предельные и относительные погрешности. Теорией доказывается, а практикой подтверждается, что абсолютное большинство случайных погрешностей находится в интервале от 0 до m - 68% , от 0 до 2m - 95% , от 0 до 3m - 99.7%.

На практике за предельную погрешность принимают 2m, т.е. с вероятностью 95% можно утверждать, что случайные погрешности не превысят величины равной 2m. Если n<10 то i(пред)=tB . M, где tB - коэффициент Стьюдента (таблица)

Таблица коэффициентов Стьюдента

Рассмотрим на примере как выполняется математическая обработка результатов ряда равноточных измерений. Пусть длина линии измерена шесть раз (см. таблицу). Необходимо найти вероятнейшее значение измеренной величины и оценить результаты измерений.

l'=75.10 м,

x =75.10+0.37/6=75.16 м,

m =91 / 5=4.2 см,

М = 4.2 / 6=1.7 см,

i(пред)=tB . M = 2.52 . 1.7 = 4.4 см,

L = 75.16 + 0.04 м (P=95%),

Отн.погр.L/L=4.4/7510=1/1700

Матобработка ряда измерений одной и той же величины выполняется в следующей последовательности:

- определение вероятнейшего значения измеренной величины x=li/n;

- оценка точности отдельного измерения

- оценка точности арифметической середины (вероятнейшего значения)

- определение окончательного результата L = x  tBM.

22b. Средняя квадратическая погрешность функции измеренных величин.

Пусть известна функция общего вида

z = f (x,y,...,t),

где x,y,...,t - независимые измеренные величины, полученные с известными средними квадратическими погрешностями (СКП).

Тогда СКП функции независимых аргументов равна z корню квадратному из суммы квадратов произведений частных производных функций по каждому из аргументов на СКП соответствующих аргументов, т.е.

(*)

Если функция имеет вид

z = x + y + ...+ t,

то

Для функции

z = k1x + k2y + ...+knt,

где k1,k2,kn - постоянные величины,

Пример 1.Определить СКП превышения, полученного по формуле h=d. tg, если горизонтальное проложение d=100.0 м, =4 30', md=0.5 м, m=1'.

Решение.

1.Находим частные производные

dh/dd = tg, dh/dv=d/cos2.

2.По формуле (*) получаем

м

Пример 2. Определите с какой СКП получена площадь здания прямоугольной формы, если его длина и ширина соответственно равные 36 и 12 м измерены с СКП 1 см.

Решение.

Площадь здания P = a . b.

Так как (dP/da)=b,

dP/db=a, ma=mb=ma,b, то

м2

25. Вероятнейшие поправки к измерениям

Уравнивание геодезических измерений – совокупность математических операций, выполняемых для получения вероятнейшего значения геодезических координат точек земной поверхности и для оценки точности результатов измерений.

Уравнивание проводится для устранения невязок, обусловленных наличием ошибок в избыточно измеренных величинах, и для определения вероятнейших значений искомых неизвестных или их значений, близких к вероятнейшим. В процессе уравнвиания это достигается путём определения поправок к измеренным величинам (углам, направлениям, длинам линий или превышениям).

Уравнивание геодезических измерений бывает строгое и упрощенным (нестрогое). В случае строгого уравнивания поправки обычно определяют с помощью метода наименьших квадратов так, чтобы сумма квадратов всех поправок была наименьшей. Определяемые и такого уравнивания поправки имеют вероятнейшие (оптимальные) значения. Применение метода наименьших квадратов к уравниванию измеренных величин вполне законно только в том случае, когда ошибки их имеют случайный характер.

Так, в простейшем примере плоского треугольника сумма углов должна строго равняться 180°. Измеренные углы вследствие ошибок измерения этому условию, вообще говоря, не удовлетворяют и должны быть исправлены прибавлением соответствующих поправок. Из всего бесконечного множества поправок, которые приводят сумму измеренных углов к 180°, лишь одна система поправок обладает тем свойством, что сумма квадратов их есть минимум; такая система считается вероятнейшей. В приведённом примере это имеет место, если невязку разложить поровну на все три угла.

Строгое уравнивание геодезических сетей, особенно больших по размерам, сопряжено с рядом трудностей технического и организационного характера. Поэтому на практике часто применяются упрощенное (нестрогое) уравнивание, при котором все геометрические условия выполняются, а вероятнейшие значения величин и оценка точности получаются приближенно.

В геодезической практике как при строгом, так и при упрощённом уравнивании широко используются главным образом два способа уравнивания: способ условных измерений и способ посредственных измерений. При первом способе поправки отыскивают непосредственно к измеренным величинам, при втором – к их функциям (как правило, координатам).

Всякий способ уравнивания состоит из следующих основных процессов: предварительных вычислений, составления условных уравнений или уравнений погрешностей, составления нормальных уравнений, решения нормальных уравнений и оценки точности измеренных и уравненных величин. При большом числе нормальных уравнений наиболее трудоёмкой частью уравнительных вычислений является их решение, поэтому оно обычно осуществляется на ЭВМ. Уравнения могут решаться методом последовательного исключения неизвестных (схема Гаусса) или методом итерации (приближений). Иногда нормальные уравнения не составляют, в этом случае неизвестные определяют непосредственно из решения или условных уравнений, или уравнений погрешностей. В некоторых случаях при обработке материалов геодезических измерений невысокой точности уравнивание результатов выполняют графическим способом.

27. АРИФМЕТИЧЕСКАЯ СРЕДИНА.

Пусть имеется n измерений одной величины X, то-есть,

              (1.34)

Сложим эти равенства, суммарное уравнение разделим на n и получим:

                (1.35)

Величина                                      (1.36)

называется средним арифметическим или простой арифметической серединой. Запишем (1.35) в виде

по третьему свойству ошибок (1.26) можно написать:

что означает, что при неограниченном возрастании количества измерений простая арифметическая середина стремится к истинному значению измеряемой величины. При ограниченном количестве измерений арифметическая середина является наиболее надежным и достоверным значением измеряемой величины.

Запишем формулу (1.36) в виде

и подсчитаем среднюю квадратическую ошибку арифметической середины, которая обозначается буквой M. Согласно формуле (1.32) напишем:

или

Но ml1 = ml2 = ... = mln= m по условию задачи, так как величина X измеряется при одних и тех же условиях. Тогда в квадратных скобках будет n * m2, одно n сократится и в итоге получим:

M2 = m2/n

или

                (1.37)

то-есть, средняя квадратическая ошибка арифметической середины в корень из n раз меньше ошибки одного измерения.

28. Среднее весовое

Среднее весовое (значение результата геодезических измерений) – оценка значения измеренной геодезической величины из многократных неравноточных независимых измерений.

Пусть имеем ряд равноточных измерений одной и той же величины, из которых образовано 3 группы: Для каждой группы измерений можно получить среднее значение: Результаты L1, L2, L3 – неравноточные, так как получены из разного числа измерений и имеют разные веса Р1, Р2, Р3. Из первоначального ряда равноточных измерений можно найти арифметическую средину:

Эта формула представляет общую арифметическую средину или весовое среднее, получаемую из неравноточных измерений L1, L2, L3 с весами P1, P2, P3. Вес общей арифметической средины равен сумме весов.

29. Метод наименьших квадратов

Метод наименьших квадратов – один из методов теории ошибок для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки.

Метод наименьших квадратов применяется также для приближённого представления заданной функции другими (более простыми) функциями и часто оказывается полезным при обработке геодезических измерени.

Метод наименьших квадратов содержит в себе 2 основных способа: коррелатный и параметрический, которые при строгом уравнивании дают одинаковые результаты. Выбор способа обычно зависит от объема вычислений, определяемого в основном количеством совместно решаемых уравнений, т.е. конфигурацией сети. Коррелатный способ более оптимален для свободных сетей и сетей с небольшим числом исходных пунктов и большим числом определяемых – по-скольку количество уравнений равно числу избыточных измерений. Параметрический способ, наоборот, выгоден для сетей с большим числом исходных и малым числом определяемых, по-скольку количество уравнений будет равно числу необходимых измерений.

Идея коррелатного способа заключается в отыскании поправок к измеренным величинам через вспомогательные неопределенные множители, называемые коррелатами. Сущность уравнивания коррелатным способом состоит в том, что задачу нахождения минимума функции уравнения разложенного по ряду Тейлора решают по способу Лагранжа с определенными коррелатами, в результате чего получают коррелатные уравнения поправок (векторы поправок). Преобразовав уравнения поправок получают нормальные уравнения коррелат, через которые находят вероятнейшие значения поправок.

Параметрический способ подразумевает вычисление поправок не к измеренным величинам, а к каким-то приближенным значениям (параметрам), т.е. к конечным результатам уравнения, которыми в геодезических сетях являются координаты или высоты пунктов, и непосредственное получение вероятнейших значений параметров, минуя вероятнейшее значение измеренных элементов сети.

Метод наименьших квадратов был предложен К. Ф. Гауссом (1794-95) и А. Лежандром (1805-06). Первоначально этот метод использовался для обработки результатов астрономических и геодезических наблюдений. Строгое математическое обоснование и установление границ содержательной применимости метода наименьших квадратов даны А. А. Марковым и А. Н. Колмогоровым. Ныне способ представляет собой один из важнейших разделов математической статистики и широко используется для статистических выводов в различных областях науки и техники.

30.Угловые измерения. Устройство теодолита. Типы теодолитов

Угловые измерения необходимы для определения взаимного положения точек  в пространстве и используются при развитии триангуляционных сетей, проложений полигометрических и теодолитных ходов, выполнении топографических съемок, решении многих геодезических задач при строительстве различных объектов. Необходимая точность измерений и построений горизонтальных и вертикальных углов на местности составляет от десятых долей секунды до одной минуты. 

Основным угломерным прибором на местности является теодолит - оптико-механический прибор,  с помощью которого измеряют горизонтальные и  вертикальные  углы,  расстояния  и магнитные азимуты.

По точности теодолиты различают трех типов: высокоточные - ТО5,Т1; точные -Т2, Т5 и технические - Т15, Т30. В перечисленных типах теодолитов цифры соответствуют точности (средней квадратической погрешности) измерения горизонтального угла одним приемом в секундах.

Основные узлы и принадлежности технического теодолита

1) горизонтальный круг, состоящий из лимба - оцифрованной по ходу часовой стрелки круговой полосы с градусными делениями;

2) алидада - часть,  расположенная соосно с лимбом и несущая элементы отсчетного устройства;

3) цилиндрический уровень - предназначен для приведения плоскости лимба горизонтального  круга в положение перпендикулярное относительно отвесной линии (горизонтальное положение);

4) зрительная труба - состоит из объектива,  окуляра, сетки нитей и фокусирующего устройства с кремальерой;

5) вертикальный круг - устроен аналогично горизонтальному и предназначен для измерения углов наклона;

6) подъемные винты - служат для приведения пузырька  цилиндрического уровня на середину;

7) становой (закрепительный) винт - закрепляет теодолит на штативе и позволяет подвесить нитяной отвес.

31. ОСНОВНЫЕ ОСИ ТЕОДОЛИТА… (УСТРОЙСТВО ЗРИТЕЛЬНОЙ ТРУБЫ, УСТАНОВКА ЕЕ ДЛЯ НАБЛЮДЕНИЙ).

Основные геометрические оси теодолита:

1. ОО1 - ось вращения прибора (вертикальная ось теодолита), 

2. UU1 - ось цилиндрического уровня (касасельная к внутренней поверхности ампулы в нульпункте),

3. WW1 – визирная ось зрительной трубы (прямая, соединяющая оптический центр объектива и крест сетки нитей),

4.VV1 - ось вращения зрительной трубы.

Геометрические требования, предъявляемые к осям: 1)UU1 ⊥ OO1, 2)WW1 ⊥ VV1, 3)VV1 ⊥ОО1.

Зрительная труба предназначена для высокоточного наведения на удаленные предметы и точки (визирные цели) при работе с теодолитом. Состоит из следующих основных частей: объектива, окуляра, фокусирующей линзы, сетки нитей, кремальеры (винта, перемещающего фокусирующую линзу внутри трубы). В зрительной трубе различают две оси: визирную и оптическую. Прямая соединяющая оптический центр объектива с центром сетки нитей называется визирной осью. Прямая соединяющая оптический центр объектива и окуляр - оптической осью трубы.

Подготовка зрительной трубы для наблюдений выполняется в следующей последовательности:

а) установка зрительной трубы "по глазу" - вращением окуляра (от –5 до +5 диоптрий) до получения четкого изображения сетки нитей;

б) установка зрительной трубы по предмету (визирной цели) - вращением кремальеры до четкого изображения визирной цели;

в) устранение параллакса, возникающего в тех случаях, когда изображение предмета не совпадает с плоскостью сетки нитей и при перемещении глаза относительно окуляра точка пересечения нитей будет проецироваться на различные точки наблюдаемого предмета. Параллакс сетки нитей устраняется небольшим поворотом кремальеры.

Зрительные трубы в геодезических приборах характеризуются увеличением, полем зрения и точностью визирования. Под увеличением   понимают отношение угла , под которым предмет виден в трубу, к углу , под которым этот же предмет виден невооруженным глазом рис.21:

 = / .

Полем зрения называется пространство, видимое в трубу при неподвижном ее положении. Его определяют углом зрения f по формуле

 = 38.2 /,

где  - увеличение трубы.

Точность визирования выражается средней квадратической погрешностью

mв = 60"/,

где 60" - средняя погрешность визирования невооруженным глазом (разрешающая способность глаза человека - предельно малый угол, при котором две точки еще воспринимаются раздельно).

32. УРОВНИ, ИХ УСТРОЙСТВО И НАЗНАЧЕНИЕ. ЦЕНА ДЕЛЕНИЯ УРОВНЯ.

В геодезических приборах используются цилиндрические и круглые уровни, различающиеся между собой ценой деления, чувствительностью и конструктивными особенностями.

Цилиндрический уровень представляет стеклянную трубку, верхняя внутренняя поверхность которой отшлифована по дуге определенного радиуса (от 3,5 до 80 м). Трубка помещается в металлическую оправу. Для регулировки уровень снабжен исправительным винтом. На наружной поверхности трубки нанесены штрихи. Расстояние между штрихами должно быть 2 мм. Точка в средней части ампулы называется нульпунктом уровня.

Линия касательная к внутренней поверхности уровня в его нультпункте называется осью уровня.Круглый уровень представляет собой стеклянную ампулу, отшлифованную по внутренней сферической поверхности определенного радиуса. За нуль-пункт круглого уровня принимается центр окружности. Осью кругового уровня является нормаль проходящая через нульпункт, перпендикулярно к плоскости, касательной к внутренней поверхности уровня в его центре.Для более точного приведения пузырька в нуль-пункт применяются контактные уровни. В них над цилиндрическим уровнем устанавливается призменное оптическое устройство, которое передает изображение концов пузырька в поле зрения трубы. Пузырек находиться в нуль-пункте, если его концы видны совмещенными.

Ценой деления уровня  называется угол, на который наклониться ось уровня, если пузырек сместиться на одно деление ампулы, т.е.  = l / R или "=(l/R) ",

где "=206265". В геодезических приборах применяют цилиндрические уровни с ценой деления от 5 до 60", круглые - от 5 до 20'.

Под чувствительностью уровня понимают минимальное линейное перемещение пузырька, которое можно заметить невооруженным глазом, обычно принимаемое в 0.1 деления, т.е. 0.2 мм.

35. ПРИВЕДЕНИЕ ТЕОДОЛИТА В РАБОЧЕЕ ПОЛОЖЕНИЕ (ЦЕНТРИРОВАНИЕ, ГОРИЗОНТИРОВАНИЕ, УСТАНОВКА ТРУБЫ ДЛЯ НАБЛЮДЕНИЙ)

Приведение теодолита в рабочее положение предусматривает:

1) центрирование - установка центра горизонтального круга над вершиной измеряемого угла. Выполняется с помощью нитяного отвеса или оптического центрира, перемещением ножек штатива и с последующим передвижением прибора на головке штатива. Погрешность центрирования зависит от требуемой точности выполняемых работ и не должна превышать 3 мм при измерении горизонтальных углов для решения большинства инженерных задач;

2) горизонтирование - приведение плоскости лимба горизонтального круга в горизонтальное положение, т.е. установка вертикальной оси вращения теодолита (ОО1) в отвесное положение. Для этого устанавливают цилиндрический уровень параллельно двум подъемным винтам и вращая их

одновременно в противоположные стороны выводят пузырек уровня на середину ампулы. Затем поворачивают цилиндрический уровень на 90 по направлению третьего подъемного винта и, вращая его, опять выводят пузырек в нульпункт. Эти действия повторяют до тех пор пока пузырек не будет отклоняться от центра ампулы более чем на одно деление. При измерении вертикальных углов отклонение пузырька от середины не должно превышать полделения;

3) подготовку зрительной трубы для наблюдений по глазу – вращением окуляра (от -5 до +5 диоптрий) до получения четкого изображения сетки нитей на светлом фоне - и по предмету - вращением кремальеры до четкого изображения визирной цели. Если изображение предмета не совпадает с плоскостью сетки нитей, то при перемещении глаза относительно окуляра точка пересечения нитей будет проецироваться на различные точки наблюдаемого предмета. Возникает параллакс, который устраняется небольшим поворотом кремальеры.

34. Коллимационная ошибка теодолита и методы ее минимизации

Рис. 1.84.

При взаимно-перпендикулярном положении осей zz и hh при вращени трубы ось zz образует плоскость, которую называют коллимационной. Если угол β между этими осями отличается от 90° на угол с, называемый коллимационной ошибкой, то при вращении трубы ось zz образует две конические поверхности, и при наведении на точку А вместо отсчета М (рис. 1.84) получим отсчет

M1 = M + c.                       (1.65)

После перевода трубы через зенит угол β между визирной осью и осью вращения трубы сохраняется, при наведении перекрестия нитей на точку А по горизонтальному кругу получим отсчет

M2 = M - с ±180°.                (1.66)

Складывая левые и правые части формул (1.65) и (1.66), находим

                  (1.67)

Следовательно, среднее из отсчетов по горизонтальному лимбу при круге право (П) и круге лево (Л), после изменения суммы на 180°, свободно от влияния коллимационной ошибки. Вычитая из формулы (1.65) соответствующие части формулы (1.66), имеем

                                  (1.68)

При более строгом выводе

                        (1.69)

где Z — зенитное расстояние (Z = 90° — v, v — угол наклона). Если коллимационная ошибка с превышает 2t, где t — точность отсчитывания по горизонтальному кругу, то выполняют юстировку, для чего на горизонтальном круге наводящим винтом алидады устанавливают отсчет М =М2 + с. При этом перекрестие сетки нитей сойдет с точки А (см. рис. 1.84).

33. ОТСЧЕТНЫЕ УСТРОЙСТВА: ШТРИХОВОЙ И ШКАЛОВОЙ МИКРОСКОПЫ. ЭКСЦЕНТРИСИТЕТ ГОРИЗОНТАЛЬНОГО КРУГА.

С помощью отсчетных устройств в теодолитах считывают показания с лимбов. В современных точных и технических теодолитах применяются штриховые микроскопы (отсчет по штриху-индексу) и шкаловые микроскопы (отсчет по шкале), а высокоточных теодолитах используют микрометры.

Отсчетный микроскоп через систему призм и линз выводит в окуляр изображения градусных делений горизонтального и вертикального кругов. На рис.23а показано поле зрение штрихового микроскопа с изображением штриха и лимбов с ценой деления в 10': вертикального В и горизонтального Г. Визуально оценивая десятые доли делений лимбов с точностью до 1', отсчеты на рисунке В=7 45' и Г=345 54'.

Рис.23.Поле зрения штрихового (а) и шкалового (б) микроскопов

В поле зрения шкалового микроскопа теодолита 2Т30 (рис.23б) цена деления лимба составляет 1 , отсчетная шкала разделена через 5', отсчеты на рисунке В = -9 37', Г = 293 42'.

В теодолитах со штриховыми и шкаловыми микроскопами отсчеты производят по одному концу диаметра лимба. Для уменьшения влияния эксцентриситета горизонтального круга (рис.23.2)- несовпадения оси вращения прибора С' с центром кольца делений лимба C - измерение горизонтального угла производят дважды: при круге лево (отсчет М') и при круге право (отсчет N').

Рис.23.2 Схема влияния эксцентриситета

Так как при этом отсчеты берутся по диаметрально противоположным концам лимба, то среднее из полученных результатов не содержит погрешности от влияния эксцетриситета (M+N)/2 =(M'+N')/2.

35. ПРИВЕДЕНИЕ ТЕОДОЛИТА В РАБОЧЕЕ ПОЛОЖЕНИЕ (ЦЕНТРИРОВАНИЕ, ГОРИЗОНТИРОВАНИЕ, УСТАНОВКА ТРУБЫ ДЛЯ НАБЛЮДЕНИЙ)

Приведение теодолита в рабочее положение предусматривает:

1) центрирование - установка центра горизонтального круга над вершиной измеряемого угла. Выполняется с помощью нитяного отвеса или оптического центрира, перемещением ножек штатива и с последующим передвижением прибора на головке штатива. Погрешность центрирования зависит от требуемой точности выполняемых работ и не должна превышать 3 мм при измерении горизонтальных углов для решения большинства инженерных задач;

2) горизонтирование - приведение плоскости лимба горизонтального круга в горизонтальное положение, т.е. установка вертикальной оси вращения теодолита (ОО1) в отвесное положение. Для этого устанавливают цилиндрический уровень параллельно двум подъемным винтам и вращая их

одновременно в противоположные стороны выводят пузырек уровня на середину ампулы. Затем поворачивают цилиндрический уровень на 90 по направлению третьего подъемного винта и, вращая его, опять выводят пузырек в нульпункт. Эти действия повторяют до тех пор пока пузырек не будет отклоняться от центра ампулы более чем на одно деление. При измерении вертикальных углов отклонение пузырька от середины не должно превышать полделения;

3) подготовку зрительной трубы для наблюдений по глазу – вращением окуляра (от -5 до +5 диоптрий) до получения четкого изображения сетки нитей на светлом фоне - и по предмету - вращением кремальеры до четкого изображения визирной цели. Если изображение предмета не совпадает с плоскостью сетки нитей, то при перемещении глаза относительно окуляра точка пересечения нитей будет проецироваться на различные точки наблюдаемого предмета. Возникает параллакс, который устраняется небольшим поворотом кремальеры.

36. ПОЛЕВЫЕ ПОВЕРКИ И ЮСТИРОВКИ ТЕОДОЛИТА.

1.Ось цилиндрического уровня (касательная к внутренней поверхности ампулы в нульпункте) должна быть перпендикулярна вертикальной оси вращения теодолита. Для поверки этого условия устанавливают цилиндрический уровень параллельно двум подъемным винтам и, вращая их, приводят пузырек на середину. Затем поворачивают цилиндрический уровень на 180 и, если пузырек отклонился более чем на одно деление, с помощью исправительных винтов смещают пузырек к центру на половину отклонения.

2.Визирная ось трубы (ось, проходящая через оптический центр объектива и перекрестие сетки нитей) должна быть перпендикулярна оси вращения трубы. Эта поверка сводится к определению коллимационной погрешности - горизонтального угла между фактическим положением визирной оси и требуемым. Для выполнения поверки наводят визирную ось трубы на удаленную, четко видимую на горизонте точку и снимают отсчеты по горизонтальному кругу при КП и КЛ. Отсчеты должны отличаться на 180 00', в противном случае имеет место коллимационная погрешность.

Если коллимационная погрешность, определяемая по формуле С=(КЛ - КП)/2, превышает 2t, где t - точность отсчетного устройства, выполняют юстировку: вычисляют средний отсчет и устанавливают его на горизонтальном круге. В этом случае наблюдаемая точка не будет совпадать с перекрестием сетки нитей. Предварительно ослабив один вертикальный исправительный винт, двумя горизонтальными совмещают перекрестие сетки с наблюдаемой точкой. Результаты измерений и вычислений записывают в журнале определения коллимационной погрешности.

3.Место нуля вертикального круга (отсчет по ВК, когда визирная ось и ось цилиндрического уровня горизонтальны) должно быть близким к нулю или отличаться от нуля не более чем на 2t. Для поверки не менее двух раз определяют место нуля по формуле МО=(КЛ+КП)/2, где КЛ и КП - отсчеты по вертикальному кругу при наведении средней горизонтальной нити на точку. Если вычисленное значение место нуля недопустимо, устанавливают наводящим винтом трубы отсчет по вертикальному кругу равный вычисленному углу наклона на точку (n = КЛ - МО). Вращая вертикальные исправительные винты сетки нитей (рис.25), предварительно ослабив один горизонтальный винт, совмещают среднюю горизонтальную нить с наблюдаемой точкой. Образцы записей отсчетов и вычислений С и МО приведены в журнале.

Рис.25. Сетка нитей теодолита