Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Биология в 2кн_кн2_Ярыгин Васильева и др_Учебник_2003 -334с

.pdf
Скачиваний:
83
Добавлен:
21.03.2016
Размер:
5.64 Mб
Скачать

формирования.

Сердце у всех позвоночных закладывается на ранних этапах развития кпереди от глотки под челюстной дугой. В его морфогенезе участвует глотка как эмбриональный индуктор. Если это свойство глотки нарушено, тсгсердце может задержаться на двух- и трехкамерном уровне развития, при этом может быть нарушено и его перемещение в загрудинную область — шейная эктопия сердца (см. § 14.4). Эти явления — результат нарушений морфогенетических корреляций в развитии шейной области. Часто этот порок развития сопровождается нарушением отходящих от сердца сосудов (персистирование общего эмбрионального ствола, двух дуг аорты и т.д.) и недоразвитостью легких.

В возникновении данных аномалий ведущим механизмом выступает нарушение эргонтических корреляций сердце — сосуды — легкие. Первичным нарушением в описанном комплексе признаков является, вероятно, нарушение генетического контроля эмбриональной индукции, описанное ранее (см. разд. 8.2.6). Таким образом, приведенный пример иллюстрирует взаимоотношение разных форм соотносительных преобразований органов при формировании сложного комплекса патологических признаков, имеющих в целом атавистическую природу.

Примером нарушения чисто геномных корреляций является синдром Дауна. Увеличение доз генов 21-й хромосомы или ее части приводит к формированию тяжелой умственной отсталости, ослаблению тонуса мышц, аномалиям мозгового черепа и мягких частей лица, светлой пигментации волос и глаз.

Кроме филогенетических координации, подкрепляемых в каждом поколении онтогенетическими корреляциями, целостность развивающегося организма отражают и такие соотносительные преобразования органов, как субституция и гетеробатмия.

Субституция — это такое эволюционное преобразование, при котором один орган замещается другим, выполняющим обычно ту же функцию с большей интенсивностью. При этом наблюдается развитие этих органов в разных направлениях. Один обычно подвергается редукции, другой — эволюционирует прогрессивно. Так, хорда замещается позвоночником и превращается в рудиментарное образование, а первичные хрящевые челюсти позвоночных заменяются вторичными костными (см. разд. 14.2.1). Это примеры гомотопной субституции, когда новый орган возникает на месте старого. При гетеротопной субституции заменяющий орган находится на новом месте. Так, функцию печени как органа кроветворения берет на себя красный костный мозг. Выделительная функция выполняется у рыб и земноводных туловищной почкой, а у пресмыкающихся и млекопитающих — тазовой.

Гетеробатмия — это такое эволюционное преобразование, при котором в одной группе организмов обнаруживается разный уровень эволюционной продвинутое™ и специализации разных частей одного и того органа, разных органов одной и той же системы или разных частей организма. Примером может являться человек, головной мозг которого за короткое время антропогенеза претерпел колоссальные морфофизиологические изменения, в то время как

81

пищеварительная система соответствует уровню развития других приматов. Гетеробатмия, наблюдающаяся внутри одной и той же системы органов в

разных филогенетических группах, обусловливает феномен компенсации функций, благодаря которому одни и те же экологические задачи решаются разными способами. Так, грызуны и копытные млекопитающие питаются одинаковой растительной пищей, но у первых наиболее выраженные адаптации к растительноядности проявляются в строении зубов и морфофизиологии слюнных желез, в то время как вторые на фоне примитивной зубной системы имеют высокоспециализированные желудок и кишечник. Явления гетеробатмии и, следовательно, компенсации функций имеют огромное эволюционное значение в связи с тем, что в организме, даже вступившем на путь узкой специализации, всегда остаются органы и системы относительно мало специализированные, которые при меняющихся условиях могут еще прогрессивно развиваться, раскрывая перед такими филогенетическими группами новые адаптивные возможности.

13.5. СОВРЕМЕННАЯ СИСТЕМА ОРГАНИЧЕСКОГО МИРА

Все живые организмы подразделяются на неклеточных (вирусы) и клеточных (все остальные). Несмотря на то что филогенетические взаимоотношения между ними неясны, вирусы как облигатно-парази-тические формы (см. § 18.3), возможно, возникли от более высокоорганизованных организмов за счет упрощения в процессе адаптации к паразитизму. В то же время не исключена возможность существования вирусов как фрагментов нуклеиновых кислот еще на предбиологическом этапе эволюции и приобретения ими основных свойств живых организмов позже, при попадании в клетки. Клеточные организмы подразделяются на про- и эукариот. Эукариоты, вероятно, произошли от прокариот (см. § 1.5).

13.5.1. Типы питания и основные группы живых организмов в природе

Древние эукариоты, будучи одноклеточными, по характеру питания специализировались на группы организмов, активно добывающих пищу путем ее поиска и захвата, и формы, добывающие продукты питания за счет их всасывания из среды. Первый способ питания называют голозойным, второй — голофитным.

Прогрессивная эволюция первого способа питания сопровождает возникновение царства Животные Animalia и весь их последующий филогенез. Поэтому главными чертами животного организма являются способность к перемещению, активному захвату и переработке пищи. Второй способ питания, наоборот, предусматривает приобретение клетками дополнительных защитных оболочек, усложняющих их захват и переваривание и, следовательно, неподвижность. Клетки части организмов, эволюционирующих по этому пути, приобрели клеточную стенку из полисахарида хитина, позволяющую всасывание высокомолекулярных органических веществ. Такие организмы перешли к сапрофитному питанию, т. е. к потреблению разлагающихся органических веществ,

82

и дали начало филогенезу царства Грибы Fungi.

Клеточная стенка других организмов построена из целлюлозы, позволяющей всасывать из среды лишь воду, углекислый газ и неорганические ионы. Приобретение ими способности к фотосинтезу явилось ключевым моментом в прогрессивной эволюции царства Растения Plantae.

Подробнее остановимся на филогенезе царства Животные. Важнейшим прогрессивным событием в эволюции животных является возникновение многоклеточности.

13.5.2. Происхождение многоклеточных животных

Прежде всего необходимо определить понятие многоклеточное животное. Важнейшими чертами многоклеточности являются следующие: 1) тело животного состоит из большого количества клеток; 2) клетки дифференцированы на половые и соматические, а последние различаются также по структуре и функциям; 3) клетки расположены в организме в несколько слоев; 4) клетки интегрированы в целостную систему благодаря существованию жидкостной внутренней среды и нервной системы.

В процессе эволюции первая характеристика многоклеточности достигается наиболее просто: среди простейших уже имеется огромное количество видов колониальных организмов. Остальные черты многоклеточности связаны с возникновением многослойности, обеспечивающей как различные условия существования клеткам, расположенным на поверхности и внутри тела, так и появление внутренней среды, объединяющей их воедино. На рис. 13.10 представлены различные варианты объединения клеток в надклеточные комплексы. Ясно, что только интеграция клеток в шаровидную структуру дает им возможность оказаться в разных условиях, дифференцироваться и взаимодействовать друг с другом.

Рис. 13.10. Варианты объединения клеток в надклеточные образования:

I—нитевидная колония клеток, II—колония в виде однослойного пласта клеток, III—двуслойная колония клеток, IV—сферический многоклеточный организм с

83

клетками разных типов

Родоначальником многоклеточных в настоящее время считают шаровидную колонию жгутиковых, половые клетки которых перемещались в глубь колонии, а соматические первично выполняли как функцию перемещения всей колонии в пространстве, так и пищеварения за счет переваривания фагоцитированных пищевых частиц, захваченных из воды.

Осуществление одной и той же клеткой функций движения и пищеварения малоэффективно. С этим связана последующая специализация клеток в направлении преимущественно пищеварения или обеспечения движения. Результатом является возникновение фагоцитобласта (внутреннего слоя амебовидных клеток, занимающихся пищеварением) и кинобласта (наружного слоя клеток со жгутиками, обеспечивающими движение).

Стойкая дифференцировка соматических клеток по функциям и строению, возникшая первоначально на фоне выделения двух клеточных слоев, явилась ключевым моментом в происхождении многоклеточных. Именно с двуслойностью связано появление жидкой внутренней среды, через которую клетки обмениваются химическими сигналами, а также дальнейшее обособление и специализация части поверхностных клеток в направлении восприятия внешних раздражителей и передача возбуждения на другие клетки, располагающиеся в отдалении от них. Таким образом возникают предпосылки к формированию нервной системы.

Гипотетический предок многоклеточных животных назван фагоцителлой (рис. 13.11). Он плавал в толще воды за счет биения ресничек кинобласта, а питался, захватывая взвешенные в среде частички пищи и переваривая их клетками фагоцитобласта. На более поздних этапах эволюции происходили многочисленные адаптации потомков фагоцителлы к многообразным условиям существования при оседании их на дно или при перемещении к поверхности, а также при изменении источников питания (захват мелких или крупных, живых или мертвых пищевых частиц).

84

Рис. 13.11. Этапы происхождения многоклеточности: I, II—сферические колонии жгутиковых, IIIV—фагоцителлы разной степени сложности; 1—кинобласт, 2— рыхлый фагоцитобласт, 3—скопление чувствительных клеток на переднем конце тела, 4—ротовое отверстие, 5—половые клетки, 6—эпителизованный фагоцитобласт

Большое значение в эволюции потомков фагоцителлы имели также изменения характера движения: пассивное движение или прикрепленный образ жизни обусловливают лучевой тип симметрии, в то время как активное перемещение в определенном направлении предусматривает формирование двубоковой, или билатеральной, симметрии. В результате возникло огромное многообразие форм многоклеточных животных.

Представления о происхождении многоклеточных, изложенные здесь, являются развитием гипотезы И.И. Мечникова (1877—1880) о том, что многоклеточность возникла на базе шаровидных колоний жгутиковых, часть клеток которых иммигрировала внутрь для переваривания пищевых частиц, в результате чего оформилась дифференцировка на экто- и энтодерму.

13.5.3. Основные этапы прогрессивной эволюции многоклеточных животных

Важным шагом в эволюции многоклеточных животных явилось возникновение третьего зародышевого листка — мезодермы. Мезодерма обеспечивает возможность дифференцировки мышечной, соединительной тканей и скелета, а также многоклеточных половых желез, в которых созревающие гаметы оказываются надежно защищены от неблагоприятных средовых воздействий. Практически все трехслойные животные ведут активно подвижный образ жизни, благодаря чему приобретают билатеральный тип симметрии. Вместе с тем у трехслойных животных с интенсивным обменом веществ, активно перемещающихся с помощью мышц, возникают проблемы с выведением большого

85

количества продуктов диссимиляции из тканей — производных мезодермы, в то время как эктодермальные и энтодермальные клетки выделяют их за счет диффузии соответственно либо наружу, либо в просвет пищеварительной полости. Поэтому именно у трехслойных впервые появляется и прогрессивно эволюционирует

выделительная система.

Следующий значительный этап эволюции животных — возникновение вторичной полости тела, или целома, первоначально функционирующего как гидростатический скелет, а также выполняющего половую и выделительную функции в связи с тем, что продукты диссимиляции и половые клетки попадают в целом и только потом выделяются наружу (см. § 14.5).

Рис. 13.12. Главные направления эволюции групп в животном царстве: 1—прогрессивное направление, 2—адаптивное направление, 3—узловые моменты в прогрессивной эволюции; каждому узловому моменту соответствует его характеристика, обозначенная в правом столбце

Существенным этапом дальнейшей эволюции многоклеточных является

86

возникновение регуляторного типа эмбрионального развития (см. разд. 8.3.1 и 8.3.2), в результате которого в развивающемся зародыше доминирует целостность морфогенетических процессов над их составляющими. Благодаря этому зародыш развивается относительно автономно в соответствии со своей генетической программой и способен компенсировать даже серьезные повреждения. Организмы, характеризующиеся такими особенностями, относят к группе вторичноротых, в отличие от первичноротых, у которых эмбриональное развитие протекает по мозаичному типу (см. разд. 8.3.1).

Наиболее крупные систематические группировки в царстве Животные называют типами. За период существования жизни на Земле их было не менее 35. К настоящему времени некоторые из них вымерли; сейчас на Земле обитают животные 26 типов.

На рис. 13.12 приведена схема главных направлений эволюции в Животном царстве, а на рис. 13.13 изображены представители основных типов современных животных. Интересно, что к концу протерозойской эры (2,7 млрд. лет тому назад) на Земле уже существовали представители всех типов животного мира и основные узловые моменты в прогрессивной эволюции животных ими были пройдены.

Существование разнообразных живых организмов на Земле на протяжении около 3 млрд. лет, а также возникновение человека как биосоциального существа определяет в настоящее время картину современного органического мира.

Рис. 13.13. Основные типы животного царства и их филогенетические взаимоотношения

13.5.4. Характеристика типа Хордовые

87

Хордовые представляют собой наиболее высокоорганизованный тип в животном мире. Их общими чертами являются следующие.

1.Внутренний осевой скелет представлен хордой, которая присутствует в эмбриогенезе у всех представителей типа, а у высших дополняется, а затем и замещается позвоночником.

2.Над хордой располагается центральная нервная система в виде нервной трубки с полостью — невроцелем.

3.В боковых стенках глотки находятся жаберные щели, соединяющие ее полость с внешней средой. У рыб и некоторых земноводных они сохраняются в течение всей жизни, у высших хордовых — только в эмбриональном периоде.

4.Тело построено метамерно. У низших хордовых и у зародышей высших сегментация распростраянется на все системы органов, у высших ярко выражена только в эмбриональном периоде. Позже частично сохраняется только в опорнодвигательном аппарате, нервной и кровеносной системах.

5.Органами поддержания равновесия и движения являются конечности, причем у низших хордовых большее значение имеют непарные, а у высших — парные.

6.Общий план строения хордовых представлен на рис. 13.14. На спинной стороне расположена нервная трубка, под ней — хорда или заменяющий ее позвоночник. Глубже находится пищеварительная трубка с развивающейся из нее дыхательной системой, а под ней — вентральный пульсирующий кровеносный сосуд или сердце. По бокам от нервной трубки и хорды лежат сомиты, а по бокам от кишки — спланхнотомы, внутри которых расположен целом.

Рис. 13.14. Общий план строения хордового животного. А — вид сбоку; Б — поперечный срез:

1—нервная трубка, 2—хорда, 3—плавники, 4—сегменты тела, 5—пищеварительная трубка, 6—пульсирующий сосуд или сердце. 7—жаберные щели в глотке, 8—целом, 9—сомит

13.5.5. Систематика типа Хордовые

88

Из четырех подтипов хордовых — Полухордовые Hemichordata, Личиночнохордовые Urochordata, Бесчерепные Acrania и Позвоночные Vertebrata — остановимся на двух последних, имеющих отношение к прогрессивному направлению в эволюции этого типа животных.

Подтип Бесчерепные состоит лишь из одного класса — Головохордовые Cephalochordata, к которому относится ланцетник; подтип Позвоночные включает следующие классы: Круглоротые Cyclostomata, Хрящевые рыбы Chondrichthyes, Костные рыбы Osteichthyes, Земноводные Amphibia, Пресмыкающиеся Reptilia, Птицы Aves и Млекопитающие Mammalia.

13.5.6. Подтип Бесчерепные Acrania

Характерной особенностью животных этого подтипа, представителем которого является ланцетник Branchiostoma lanceatum (рис. 13.15), является малоподвижный придонный образ жизни и пассивное питание за счет фильтрации воды. Тело ланцетника полупрозрачно, покрыто однослойным цилиндрическим эпителием. Дерма развита слабо. Хорда тянется от головного до хвостового конца, а нервная трубка замкнута на спинной стороне неполно. В ней расположены светочувствительные глазки Гессе, обеспечивающие ланцетнику лишь восприятие света и темноты.

Около половины длины пищеварительной трубки составляет глотка, которая начинается позади ротовой полости и пронизана более чем 100 парами жаберных щелей, ведущих в околожаберную полость. Последняя открывается во внешнюю среду на брюшной стороне тела. Кишка в передней ее части снабжена печеночным выростом, гомологичным печени других хордовых, и заканчивается анальным отверстием. При поступлении воды через рот в глотку и далее в околожаберную полость осуществляется как отцеживание взвешенных в воде пищевых частиц, так и газообмен в кровеносных сосудах межжаберных перегородок.

Кровеносная система замкнута. Имеется один круг кровообращения, функцию сердца выполняет пульсирующая брюшная аорта.

Органы выделения — метамерно расположенные на межжаберных перегородках нефридии, состоящие из воронок, которые собирают продукты диссимиляции из целома и выводят их в околожаберную полость.

Метамерно организованы и половые железы, выделяющие гаметы по мере их созревания также в околожаберную полость и далее во внешнюю среду вне зависимости от наличия поблизости половозрелых организмов противоположного пола.

Данные сравнительной анатомии и эмбриологии позволяют сделать вывод о том, что предками бесчерепных были мелкие свободнопла-вающие двустороннесимметричные существа с сегментированной мускулатурой и с небольшим количеством жаберных щелей, открывающихся наружу. Так же как и у ланцетника, питание их было пассивным и осуществлялось за счет фильтрации воды через

89

жаберные щели, а половые продукты периодически выбрасывались в воду. Эти первичные бесчерепные дали начало двум ветвям в эволюции хордовых. Представители одной из них перешли к придонному образу жизни. От них произошли предки современных бесчерепных. Другая ветвь характеризовалась усилением двигательной активности. Арогенная эволюция в этой ветви хордовых привела к формированию подтипа Позвоночные.

Рис. 13.15. Строение ланцетника. А—общий вид; Б—сагиттальный срез; В— поперечный срез:

1—миомер, 2—гонада, 3—щупальца предротовой воронки, 4—спинной мозг, 5— хорда, 6—жаберные щели, 7—лучи (камеры) спинного плавника, 8— анальное отверстие, 9—кишечник, 10—атриопор, 11—печеночный вырост, 12—корень спинной аорты, 13—наджаберная бороздка, 14—глотка, 15—жаберная перегородка, 16—атриальная полость, 17—металлевральная складка, 18—эндостиль

13.5.7. Подтип Позвоночные Vertebrata

90