Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

био занятие 7

.docx
Скачиваний:
25
Добавлен:
24.11.2019
Размер:
477.13 Кб
Скачать

2. Кариотип, совокупность признаков хромосомного набора, характерная для каждого биологического вида. К таким признакам относятся:

  • число, размер и форма хромосом,

  • положение на хромосомах первичной перетяжки (центромеры),

  • наличие вторичных перетяжек,

  • чередование гетерохроматиновых и эухроматиновых участков и др.

При изучении кариотипа, которое обычно проводят на стадии метафазы клеточного цикла, используют: микрофотографирование, специальные способы окраски хромосом и др. методы. Для получения классического кариотипа используется окраска хромосом различными красителями или их смесями: в силу различий в связывании красителя с различными участками хромосом окрашивание происходит неравномерно и образуется характерная полосчатая структура (комплекс поперечных меток,), отражающая линейную неоднородность хромосомы и специфичная для гомологичных пар хромосом и их участков (за исключением полиморфных районов, локализуются различные аллельные варианты генов). Первый метод окраски хромосом, позволяющий получить такие высокодетализированные изображения, был разработан шведским цитологом Касперссоном (Q-окрашивание). Используются и другие красители, такие методики получили общее название дифференциального окрашивания хромосом.

Типы дифференциального окрашивания хромосом

G-окрашивание — модифицированное окрашивание по Романовскому — Гимзе. Чувствительность выше, чем у Q-окрашивания, поэтому используется как стандартный метод цитогенетического анализа. Применяется при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы).

Q-окрашивание — окрашивание по Касперссону акрихин-ипритом с исследованием под флуоресцентным микроскопом. Чаще всего применяется для исследования Y-хромосом (быстрое определения генетического пола, выявление транслокаций между X- и Y-хромосомами или между Y-хромосомой и аутосомами, скрининг мозаицизма с участием Y-хромосом).

R-окрашивание — используется акридиновый оранжевый и подобные красители, при этом окрашиваются участки хромосом, нечувствительные к G-окрашиванию. Используется для выявления деталей гомологичных G- или Q-негативных участков сестринских хроматид, или гомологичных хромосом.

C-окрашивание — применяется для анализа центромерных районов хромосом, содержащих конститутивный гетерохроматин и вариабельной дистальной части Y-хромосомы.

T-окрашивание — применяют для анализа теломерных районов хромосом. В последнее время используется методика так называемого спектрального кариотипирования

3. Кариотип - это полный набор хромосом в ядре клетки. Это название произошло от двух греческих слов карион - ядро и типос - отпечаток. Генетики нумеруют хромосомы согласно их размерам. Другими словами, самая большая хромосома имеет номер 1. Отметим, что хромосомы 22 пар называют аутосомами, а 23-й пары - половыми. Таков нормальный кариотип человека.

Хромосомы человека различаются по размеру, расположению центромеры и вторичных перетяжек. Впервые подразделение кариотипа на группы было проведено в 1960 г. на конференции в г. Денвере. В описание кариотипа человека первоначально были заложены два следующих принципа:

- расположение хромосом по их длине;

- группировка хромосом по расположению центромеры (метацентрические, субметацентрические, акроцентрические).

Все хромосомы подразделялись на 7 групп:

А - крупные метацентрические (1-3);

В - крупные субметацентрические (4 и 5);

С - среднего размера субметацентрические (6-12 и Х);

D - крупные акроцентрические (13-15);

Е - маленькие субметацентрические (16-18);

F - маленькие метацентрические (19 и 20);

G - маленькие акроцентрические (21, 22 и Y).

Различают четыре типа строения хромосом:

  • телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);

  • акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);

  • субметацентрические (с плечами неравной длины, напоминающие по форме букву L);

  • метацентрические (V-образные хромосомы, обладающие плечами равной длины).

Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода.

Спутники (сателлиты)

Сателлит — это округлое или удлинённое тельце, отделённое от основной части хромосомы тонкой хроматиновой нитью, по диаметру равный или несколько меньший хромосоме. Хромосомы, обладающие спутником принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.

4.

В онтогенезе млекопитающих можно выделить 4 основных этапа дифференцировки.

.

Главным критерием пола является формирование воспроизводительной, половой системы и физиологического (биохимического) механизма, обеспечивающего скрещивание.

Зачаточные гонады у эмбрионов животных оказываются двойственной природы или, точнее, индифферентными в половом отношении. Они состоят из внешнего слоя ткани, называемого кортексом (cortex), из которого развивается женская ткань, и из внутреннего слоя, называемого медуллой (medulla), из которого развивается мужская ткань. В ходе дифференциации пола идет развитие одного из зачатков и подавление другого. У мужского пола быстрее развивается медуллярная ткань, которая подавляет деятельность кортикального слоя, в результате гонады превращаются в семенники. У женского пола ускоряется развитие кортикального слоя, в силу чего подавляется формирование медуллярного слоя, и гонады превращаются в яичники. Соответственно этим преобразованиям половых зачатков дифференцируются и половые пути. Вначале закладываются как Вольфовы, так и Мюллеровы протоки, но впоследствии протоки противоположного пола дегенерируют или остаются в зачаточном состоянии.

Хромосомное определение пола

Большинство животных являются раздельнополыми организмами. Пол можно рассматривать как совокупность признаков и структур, обеспечивающих способ воспроизводства потомства и передачу наследственной информации. Пол чаще всего определяется в момент оплодотворения, то есть в определении пола главную роль играет кариотип зиготы. Кариотип каждого организма содержит хромосомы, одинаковые у обоих полов, — аутосомы, и хромосомы, по которым женский и мужской пол отличаются друг от друга, — половые хромосомы. У человека «женскими» половыми хромосомами являются две Х-хромосомы. При образовании гамет каждая яйцеклетка получает одну из Х-хромосом. Пол, у которого образуются гаметы одного типа, несущие Х-хромосому, называется гомогаметным. У человека женский пол является гомогаметным. «Мужские» половые хромосомы у человека — Х-хромосома и Y-хромосома. При образовании гамет половина сперматозоидов получает Х-хромосому, другая половина — Y-хромосому. Пол, у которого образуются гаметы разного типа, называется гетерогаметным. У человека мужской пол — гетерогаметный. Если образуется зигота, несущая две Х-хромосомы, то из нее будет формироваться женский организм, если Х-хромосому и Y-хромосому — мужской.

Переопределение пола

5.Гены, локализованные в одной хромосоме, называются группой сцепления

Сцепление генов, совместная передача двух или более генов от родителей потомкам. Объясняется тем, что эти гены лежат в одной хромосоме, то есть принадлежат одной группе сцепления и поэтому не могут случайно перекомбинироваться в мейозе, как это бывает при наследовании генов, лежащих в разных хромосомах. Сцепление генов было открыто в 1906 английскими генетиками У. Бэтсоном и Р. Пеннетом, обнаружившими в опытах по скрещиванию растений у некоторых генов тенденцию передаваться совместно и тем самым нарушать закон независимого комбинирования признаков.

6. Кроссинговер (англ. crossing-over — перекрест хромосом) — процесс обмена гомологичных хромосом участками во время их конъюгации в профазе I мейоза. Кроссинговер - один из важнейших процессов, обеспечивающих комбинативную изменчивость и, тем самым, дающий материал для естественного отбора.

7. основные положения хромосомной теории наследственности Моргана:

  1. гены, отвечающие за наследование признаков, расположены в хромосомах;

  2. гены располагаются линейно, каждый ген имеет своё место в хромосоме – локус;

  3. набор генов в каждой хромосоме уникален;

  4. расположенные близко друг к другу группы генов наследуются сцеплено;

  5. число сцепленных генов равно гаплоидному набору хромосом и постоянно для каждого вида (у человека 23 пары хромосом, следовательно, 23 пары сцепленных генов);

  6. сцепление хромосом нарушается в ходе кроссинговера (перекрёста) – процесса обмена участками хромосом в профазе I мейоза;

  7. чем дальше друг от друга находятся сцепленные группы генов в хромосоме, тем больше вероятность кроссинговера.

8. Генетические карты хромосом — это схема взаимного расположения и относительных расстояний между генами определенных хромосом, находящихся в одной группе сцепления.Впервые в 1913 — 1915 годах на возможность построения генетических карт хромосом указывают Т. Морган и его сотрудники. Они экспериментально показали, что основываясь на явлениях сцепления генов и кроссинговера можно построить генетические карты хромосом. Возможность картирования основана на постоянстве процента кроссинговера между определенными генами. Генетические карты хромосом составлены для многих видов организмов: насекомых (дрозофила, комар, таракан и др.), грибов (дрожжи, аспергилл), для бактерий и вирусов.

Цитологические карты хромосом, схематическое изображение хромосом с указанием мест фактического размещения отдельных генов, полученное с помощью цитологических методов. Ц. к. х. составляют для организмов, для которых обычно уже имеются генетические карты хромосом. Каждое место расположения гена (локус) на генетической карте организма, установленное на основе частоты перекреста участков хромосом (кроссинговера), на Ц. к. х. привязано к определённому, реально существующему участку хромосомы, что служит одним из основных доказательств хромосомной теории наследственности. Для построения Ц. к. х. используют данные анализа хромосомных перестроек (вставки, делеции и др.) и, сопоставляя изменения морфологических признаков хромосом при этих перестройках с изменениями генетических свойств организма, устанавливают место того или иного гена в хромосоме. Цитологическими методами легко определить отсутствие участка хромосомы или перенос его в др. место. Сопоставление Ц. к. х. с генетическими показало, что физическое расстояние между генами в хромосомах не соответствует генетическому (видимо, частота кроссинговера неодинакова в разных участках хромосом), поэтому плотность распределения генов на цитологических и генетических картах хромосом различна. Так было установлено важное генетическое явление — неравномерность частот перекреста по длине хромосомы

Соседние файлы в предмете Биология