Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Химеры и мозаичные животные и растения.doc
Скачиваний:
226
Добавлен:
30.05.2014
Размер:
650.24 Кб
Скачать

24

Содержание

Введение

2

Технология получения мозаичных животных и растений

4

Мозаичные растения и растения-химеры

11

Мозаичные животные и животные-химеры

15

Заключение

22

Литература

24

Введение

Началом систематических исследований химер явилась работа А.Тарковского из Краковского университета, сообщившего в 1961 г. об успешном объединении делящихся мышиных эмбрионов. Соединенные в пару бластоцисты образовали при культивировании в питательной среде единую крупную бластоцисту. Самым трудным в создании химеры оказался первый шаг. При обычном развитии эмбрионы окружены специальной оболочкой, предохраняющей их от спонтанной агрегации. При первых экспериментах эту оболочку удаляли механическим путем, засасывая эмбрион в узкий капилляр, что было подлинным испытанием как для исследователей, так и для самих эмбрионов, нещадно повреждаемых при этом. Это было только начало – тогда дальше получения зародыша продвинуться не удалось.

Год спустя американская исследовательница Б.Минц вырастила знаменитых мышат, одним из “родителей” которых были клетки опухоли, ведущей происхождение от эмбриона. Минц предложила растворять оболочку ферментом проназой. Фермент обнажает эмбрионы, а затем их надо столкнуть друг с другом (здесь в ход идут стеклянные иглы, пинцеты, волосяные петли и требуется высокое искусство – надо вовремя остановить процесс растворения белка, чтобы не задеть то, что лежит под оболочкой). Можно использовать и растительный белок – фитогемагглютинин, который хорошо склеивает клетки. Соприкоснувшись, зародыши продолжают слипаться самопроизвольно. Так получают агрегационных химер. Эксперименты показали, что агрегация благополучно совершается между эмбрио­нами, находящимися на 8–16 или на 32 стадиях клеточного деления. Лучше всего, если соединяются эмбрионы одного возраста. Минц первой удалось не только объединить пару эмбрионов (у которых было таким образом четыре родителя), но даже по десять и более, формируя огромные бластоцисты.

Чтобы создать инъекционную химеру, бластоцисту закрепляют в пипетке и с помощью микроманипуляторов проделывают в ее оболочке отверстие, сквозь которое также пипеткой вводят донорскую клетку. Это более сложный способ, и к нему прибегают, если по каким-то причинам бластоцисты не могут объединиться или если надо получить межвидовые химеры. Во втором случае важно, чтобы оболочка бластоцисты оказалась “своей” для ткани матки и чтобы клетки введенной бластоцисты были надежно упрятаны под этой оболочкой.

На сегодня с химерами млекопитающих работают десятки лабораторий, где, в полном смысле слова, “лепят” животных. В дело идут кусочки крошечных эмбрионов, а точнее, фрагменты бластоцист или целые бластоцисты. Объединенные бластоцисты имплантируют в организм приемной матери. У новорожденных организм оказывается построенным из разных клеток, ведущих родо­словную не от двух, как обычно, а от четырех и более родителей. Поэтому химер называют иногда еще “четырехродительскими” животными (tetraparental animals).

Тарковский впервые ввел термин “химеры” для обозначения таких животных, а Минц использовала другой синоним – аллофенные мыши, что указывает на их происхождение в результате агрегации эмбрионов. Однако термин “аллофенные” не совсем удачен, и лучше его не использовать. По-видимому, также лучше не использовать термин “мозаичные” для обозначения животных, возникших в результате агрегации клеток двух зародышей, так как мозаичные особи образуются из одной оплодотворенной яйцеклетки. Различные клеточные популяции у мозаиков возникают в ходе развития, как результат мутаций, рекомбинаций или нерасхождения хромосом в соматических клетках. Итак,

Химера - организм-мозаик, сочетающий клетки, ткани, органы различных организмов.

Химера - организм, который состоит из тканей двух особей, имеющих соматические клетки с различными генотипами. Химеры возникают в результате соматических мутаций, генетических рекомбинаций, нарушений клеточного деления, а также при вегетативных прививках.

Были созданы и молекулярные химеры. Так в генной инженерии называют организм, имеющий составной геном, то есть объединяющий в одном ядре ДНК из разных организмов. Пример такой химеры – бактерия E. coli, в плазмиду которой включены куски ДНК другой бактерии или высшего организма.

Созданы комбинации, которые носят название химеропласты (РНК+ДНК), назначение которых – ремонт подпорченной ДНК. В качестве вектора в этом случае используется обыкновенный вирус простуды, а еще лучше липосомы.

Само существование химер есть иммунологический парадокс. У них не обнаружено каких-либо признаков иммунологической несовместимости клеточных популяций разного генотипа. Как может быть, что две разные популяции клеток уживаются в очевидной гармонии, ведь они отличаются и генетически, и своими антигенами? Наиболее очевидный ответ таков: между лимфоидными клетками двух клеточных популяций возникает взаимная иммунологическая толерантность, и эта взаимная терпимость скорее врожденная, чем приобретенная. Каков же механизм преодоления иммунного конфликта, похож ли он на терпимость к “своим” антигенам у обычного, не химерического животного?

У агрегационных химер были выделены клетки лимфатических узлов и им устроили специальную проверку. Неожиданно выявилась взаимная неуживчивость обоих типов, хотя в самом организме они благополучно сосуществуют. Лимфоциты разных линий атаковали друг друга. Далее лимфоциты разных линий были смешаны с фибробластами (клетками соединительной ткани тех же линий). В этом опыте решили посмотреть – выживут ли фибробласты? Если останутся живыми, значит лимфоциты воюют только друг с другом, не реагируя на ткань собственного организма. Если фибробласты погибнут, значит, и тут процветает вражда. Оказалось, что в результате мощной иммунной атаки (лимфоцит А против фибробласта В и наоборот) клетки тканей были разрушены. Так где же здесь, спрашивается, толерантность?

Самым неожиданным оказалось то, что иммунная атака лимфоцитов предотвращалась сывороткой, извлеченной из крови химер. Из этих экспериментов последовал ясный вывод, что обе иммунные системы химеры настроены друг к другу очень нетерпимо, но что в сыворотке организма есть особый блокирующий фактор, усмиряющий конфликт. Предполагается, что блокирующим фактором могут быть антитела и комплексы антиген-антитело. Если бы блокирующий фактор обнаруживался у всех химер, можно было бы говорить о какой-то универсальной закономерности. Все, однако, оказалось сложнее. При некоторых комбинациях клеток блокирующий фактор у химер почему-то не образуется. Возможно, сосуществование клеточных линий поддерживается особыми лимфоцитами, так называемыми Т-супрессорами. У этих лимфоцитов особая задача: не атаковать антиген, а, наоборот, охлаждение иммунного пыла атакующих Т-лимфоцитов.

В конечном счете, химеры позволили впервые наглядно убедиться в том, что каждая ткань организма, каждый организм ведут свое происхождение от определенных “начальных” клеток. Потомство единичной недифференцированной клетки называется клоном. В этом смысле любой обычный индивидуум есть клон от единственной оплодотворенной зиготы. Химера, созданная агрегацией двух зародышей, содержит два таких исходных клона.

Химеры убедили также, что все развитие индивидуального организма состоит из чередующихся периодов. В одних – преобладает активное движение клеток, когда они переползают с места на место, перемешиваются. В другие периоды идет активное размножение клеток. В это время в общей массе недифференцированных клеток обособливаются отдельные группы, превращающиеся в зачатки органов и тканей. Минц впервые составила такие подсчеты: две клетки дают начало печени; каждый позвонок ведет происхождение от четырех клеток; все волосяные фолликулы закладываются их трех клеток.

В современной медицине остро стоит проблема несовместимости, и химеры показывают, как решается проблема иммунного конфликта у генетически разнородных клеток. С иммунным статусом химер прямо связана степень их устойчивости к опухолевым заболеваниям.

Работа с химерами становится удобным методом в работе селекционеров. Часто хозяйственные показатели какой-то породы животных улучшают скрещиванием ее с другой породой. Но с какой именно скрещивать? Объединение двух или более типов клеток в одной химере позволит быстро увидеть, как сочетаются признаки разных линий друг с другом. Это позволит быстро проиграть ситуацию – стоит вести долгую селекционную работу по объединению признаков двух пород или нет.

Инъекционные химеры способны сослужить поистине бесценную службу. С их помощью можно законсервировать редкий генофонд. Если клетки животных вымирающего или очень редкого вида запрятать в бластоцисту другого вида, то в появившемся на свет химерическом животном будут сохранены гены исчезающего вида и со временем прогресс биотехнологии позволит восстановить и сами виды.

И, что очень важно, химеропласты позволили поставить на практическую основу разработку методов лечения генетических заболеваний.

Технология получения мозаичных животных и растений