Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Эмбриональные стволовые клетки. В.С. Репин.doc
Скачиваний:
183
Добавлен:
14.06.2014
Размер:
13.99 Mб
Скачать

Репин В.С., Ржанинова А.А., Шаменков Д.А.

Эмбриональные стволовые клетки:

фундаментальная биология

и

медицина

Москва

2002

«Реметэкс»

Оглавление:

ГЛАВА 1 Эмбриональные стволовые клетки: фундаментальные исследования

1. На пороге новой биологии и медицины

2. ЭСК: основные определения и концепция

3. Основные источники и способы выделения ЭСК (историческая справка)

4. Молекулярные основы тотипотентности генома ЭСК

5. Особенности фенотипа ЭСК

6. ЭСК – модель для изучения геномики раннего эмбриогенеза и органогенеза

7. Направленная дифференцировка ЭСК и ППК in vitro

8. ЭСК в изучении функций Нох-генов

9. ЭСК - новый биоресурс медицины

10. ЭСК: законодательство и биоэтика

11. Мост между наукой и клиникой

12. Литература

5

8

26

46

50

55

60

69

71

79

83

86

Глава 2 Стволовые клетки в эмбриогенезе мозга млекопитающих

1. Модели на стыке клеточной биологии и геномики

2. Нервная трубка - первоисточник провизорных стволовых клеток

3. Стволовое пространство обонятельного нейроэпителия

4. Стволовое пространство эпендимы

5. Клональная дисперсия стволовых клеток мозга

6. Регионализация и сегментация нервной трубки

7. Первичный нейро - и глиогенез

8. Направленная миграция прогениторных клеток: взаимодействие с радиальной глией

9. Нейрональные стволовые клетки in vitro

10. Методические трудности получения клонов НСК из ЭСК

11. Получение нейронов из ЭСК

12. Получение линий НСК

13. Трансплантация НСК/прогениторных клеток в развивающийся мозг эмбрионов

14. Трансдифференцировка НСК после трансплантации

15. Нейромезенхимальные стволовые клетки нервного гребня

16. Литература

Коллектив авторов

96

98

105

107

109

110

119

121

125

133

135

138

147

148

149

162

176

ГЛАВА ПЕРВАЯ

Эмбриональные стволовые клетки: фундаментальные исследования

Природные силы внутри нас являются наилучшими целителями болезней

Гиппократ

1. На пороге новой биологии и медицины

Поражающее разнообразие многоклеточных имеет весьма скромное начало в одной оплодотворенной яйцеклетке. Много поколений биологов и эмбриологов размышляло над загадкой, каким образом генетическая информация одной клетки макромасштабируется в сотни миллионов клеток нового зародыша.

Экспериментальный прогресс сдерживался тем, что яйцеклетки, зиготы и бластомеры не удавалось перевести в бессмертные линии, получив таким способом клеточный материал в количествах, достаточных для изучения спектров мРНК и белков (Weismann, 2000). Только эмбриональные стволовые клетки (ЭСК) – пролиферирующие «дублеры» зиготы - стали новым ресурсом клеток, стоящих у истоков развития. Наука сделала первый шаг к лабораторной ткани, повторяющей соматический эмбриогенез млекопитающих в обход гамет и оплодотворения. Тотипотентность – это свойство генома клеток макромасштабировать программы эмбриогенеза, в том числе воспроизводить любую из 250 специализированных клеток взрослого организма. Подобно зиготе и первым клеткам зародыша, ЭСК в простых условиях культуры воспроизводят «лабораторный» эмбриогенез в два этапа. Сначала микрограммовые количества “клеток без фенотипа” пассируют в миллиарды клеток. Затем незрелые постмитотические клетки с помощью набора химических инструкций in vitro видоизменяют в клетки мозга, сердечной, скелетной мышцы, печени и т.п. Получение соматических клеток из ЭСК идет в обход органогенеза и многих событий, происходящих при естественном развитии зародыша в матке. Как известно, специализированные клетки взрослого организма необратимо утрачивают способность к повторению эмбриогенеза. В культуре большинство специализированных клеток, изолированных из тканей, быстро дедифференцируются, теряя фенотип и профиль функций. Науке пока не известны способы получения стволовых клеток из дифференцированных клеток. ЭСК - это эмбриогенез без половых клеток и беременности.

ЭСК – незаменимая модель для функциональной постгеномики. Кардиомиоциты, миоциты, клетки крови и иммунной системы являются полными автоматами. Поведение ЭСК определяется взаимодействием внешних сигналов с эпигеномной системой клеток, имеющих уникальную протеомику и огромное «меню» из предсинтезированных мРНК. На клетках ЭСК с максимально простым фенотипом легче анализировать главный алгоритм онтогенеза: как soft сигналы непрерывно изменяют hard- устройство клеток. В отличие от молекулярной генетики, изучавшей функции отдельных генов, постгеномика занимается протеомикой целостных белковых сетей (как soft-сети собирают клеточные устройства). Интегральные белковые сети - платформа целенаправленного поведения клеток в виде альтернативных ответов. Адекватный выбор сигналов и ответы ЭСК заставляют признать, что клетки имеют элементарный интеллект для распознания, выбора сигналов, их селективной переработки. Селективный отбор сигналов транслируется далее в паттерны поведения клеток. Поведение клеток и его нарушение является конечной целью современной медицины. Этот уровень знаний дает новые инструменты для разгадок болезней клеток и старения.

Другая важная особенность генома ЭСК – спонтанная частота мутаций ниже в несколько раз, чем у соматических клеток. Внутрихромосомная рекомбинация и эндоредупликация отдельных сегментов хромосом полностью блокированы устройством хроматина. Генетическая нестабильность хромосом и анеуплоидия в пассажах характерны только для линий тератокарциномы и эмбриокарциномы (Servantes R.B., Stringer J.R., Tischfield J.A.,2002). Эта особенность организации хроматина делает маловерятными случайные перестройки хромосом, связанные с малигнизацией трансплантированных ЭСК-дериватов.

Cтволовая ниша – стабильное микроокружение вокруг каждого клона ЭСК, создаваемое монослоем так называемых фидерных клеток. Трофобласт служит фидером для эмбриобласта у предимплантационных зародышей млекопитающих. Клетки хориоидного сплетения служат питательной, защитной и информационной средой для нейральных стволовых клеток эпендимы развивающегося мозга. Эндотелиальные синусы, либо капиллярная сеть служат нишей для региональных стволовых клеток органов и тканей, в том числе для мезенхимальных стволовых клеток. По этой причине все ранние ЭСК зародыша выращивают в суспензии над монослоем фидерных стромальных клеток, которые обеспечивают незрелые плюрипотентные клетки всем необходимым для выживания и самообновления.

В настоящее время ЭСК нужны не только для расшифровки кодов пред- постимплантационного развития, но и лабораторного воспроизводства клеток органов в обход беременности. Получить миниорганы in vitro – более трудная задача, чем получить дифференцированные клетки тех же органов. Клетки -дублёры зиготы необходимы для биоэтически допустимых экспериментов. ЭСК не являются зародышем, не имеют статуса «новой жизни», поскольку получены в обход оплодотворения и беременности. Сохраняя ранг клеток, ЭСК являются чем-то большим: они серийно копируют органогенез. Они незаменимы для изучения стыков развития клетка/орган/ткань. Пока наука не имеет достаточной платформы, чтобы окончательно определить юридический/ биоэтический статус ранних зародышей, эмбрионов и плодов. Отсутствие законодательной базы относительно всех периодов жизни человека существенно влияет на принятие практических решений в области репродукционного и терапевтического клонирования. Биоэтические посылки многих высокоразвитых стран, утверждающих статус новой жизни и личности с момента зачатия и появления зиготы, идут вразрез с принятым законодательством, признающим права новой жизни лишь с момента рождения. Согласование этих вопросов на уровне государств и международных институтов (ООН, Совет Европы и т.п.) имеет первостепенное значение для свободного развития биологии и медицины. Как известно, права на новые исследования и знания могут быть ограничены, если человек или зародыш не становятся средством в руках других людей.

Биологи в современном обществе вынуждены отстаивать право на новые границы знаний и новые технологии. Развитие зиготы в зародыш воспроизводится в лаборатории. Многие представители религии настаивают, что создание/разрушение ранних зародышей в лаборатории недопустимо. В то же время в США и многих странах разрешено платное донорство яйцеклеток (1500-2000 долларов в США), которое открыло путь к внеполовому получению ранних зародышей. Один работающий банк спермиев и яйцеклеток в Норфолке (Канада) способен обеспечить работу всех биотехнологических компаний с искусственными бластоцистами для изолирования линий ЭСК. Бластоцисты сейчас можно получить путем переноса ядра соматической клетки заказчика в зрелую донорскую яйцеклетку, из которой предварительно был удален пронуклеус. Лабораторные банки тотипотентных клеток уже создали техногенную эмбриологию и альтернативу половому процессу не с целью повторного воспроизводства копий уже живших людей, а с целью лечения миллионов пациентов на планете. Согласно прогнозу, в 2020-2030 годах примерно треть пациентов будет получать лечение в виде пересадок дериватов ЭСК. Не размышления, а единственно возможная помощь погибающему пациенту – это императив биоэтики у постели больного (особенно у фатально обреченных). Стремление помочь склоняют врача к лабораторному клонированию клеток пациента, как к последнему эффективному средству помощи. Аморальным в наше время становится не использовать ЭСК для создания банка резервных клеток каждого человека на случай заболевания. Наиболее гуманная биоэтика заставляет остальное общество видеть проблему прежде всего глазами и нуждами больных людей и их ближайших родственников. Каждый пациент имеет право на спасение и новые формы лечения. Наука и общество должны развивать медицину, дающую новый шанс на выживание или продление жизни существующим на земле поколениям. Новые реалии медицины сильно изменили вектор дискуссий вокруг ЭСК.

В XIV веке происходили ожесточенные теологические споры о возможности посмертных вскрытий с целью изучения внутренних органов и причин заболеваний. Всего несколько врачей того столетия посмели создать секционный зал. Без этих пионеров в следующем веке не было бы анатомического атласа и великих открытий Леонардо. Морфология стала первой королевой медицины XV века. В XXI веке на стыке клеточной биологии ЭСК с функциональной постгеномикой рождается новое будущее медицины XXI века. Неизбежно разгораются споры и дискуссии, а знания обрастают мифами и предубеждениями в обществе.