Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы Физиология.doc
Скачиваний:
439
Добавлен:
07.02.2015
Размер:
1.69 Mб
Скачать

Вопрос №1

Нормальная физиология как научная основа медицины, её связь с другими науками.

Предмет физиологии. Физиология - наука о динамике жизненных процессов. Она является одним из важнейших разделов биологических наук. Физиология изучает функции, т. е. процессы жизнедеятельности, живого организма, его органов, тканей, клеток и структурных элементов клеток. Для всестороннего и глубокого, понимания функций физиология стремится выяснить все их свойства и проявления, взаимосвязи и изменения в разных условиях внешней среды и при различном состоянии организма. Физиология изучает видовое и индивидуальное развитие функций, изменение и приспособление их к постоянно меняющимся условиям внешней среды. Конечной задачей физиологии является такое глубокое познание функций, которое обеспечило бы возможность активного воздействия на них в желаемом направлении.

Связь физиологии с другими науками. Физиология тесно связана с рядом областей знания, базируясь в своих исканиях на данных одних наук и являясь в свою очередь основой для развития других наук. Физиология в ходе исследований опирается на законы физики и химии и использует их методы. Причина этого в том, что при каждом жизненном процессе происходят превращения вещества и энергии, т. е. физические и химические процессы. Поэтому в физиологии приобрели важное значение два направления физиологического исследования — физическое и химическое. В этих двух направлениях накоплен очень большой фактический материал, выявлены своеобразные закономерности протекания физических и химических процессов в организме, разработаны специальные методы и технические приемы изучения этих процессов. Поэтому физическое и химическое направления исследования жизненных явлений превратились в самостоятельные научные дисциплины: биологическую физику и биологическую химию.

Одно из важных ответвлений биофизического направления — электрофизиология, изучающая электрические явления в живом организме, которые сопровождают процессы возбуждения нервной, мышечной и железистой тканей.

Биофизика и биохимия изучают отдельные — физические или химические — проявления жизнедеятельности организма или его частей, т. е. элементы общего единого целого — физиологической функции. Биофизика и биохимия открывают большие возможности для анализа жизненных явлений. Однако ни одна из них в отдельности не дает полного познания функций, которое достигается только путем физиологического их изучения на основе синтеза физических, химических и биологических данных.

Физиология тесно связана с морфологическими науками —анатомией, гистологией, цитологией. Это обусловлено тем, что морфологические и физиологические явления неразрывно связаны. Форма, структура организма и его частей и их функции взаимообусловлены, и нельзя глубоко изучить функции организма, его органов, тканей и клеток, не зная их макроскопического, микроскопического и субмикроскопического строения и его изменений при осуществлении исследуемой функции.

Физиология опирается также на общую биологию, эволюционное учение и эмбриологию, потому что для изучения жизнедеятельности любого организма необходимо знать историю его развития — филогенетического и онтогенетического. Вместе с тем изучение эволюции функций помогает выяснению некоторых вопросов самого эволюционного учения. Близко связана физиология и со всеми медицинскими дисциплинами. Более того, как говорил И. П. Павлов, «понимаемые в глубоком смысле физиология и медицина неотделимы». Достижения физиологии постоянно используются медициной, где физиология неизменно находит широчайшее поле приложения. Понять нарушения функций, происходящие в организме при различных заболеваниях, наметить правильные пути их лечения и предохранения от них можно только при знании физиологических процессов, протекающих в нормальном, здоровом организме. Можно привести множество примеров, показывающих использование достижений физиологии в медицинской практике. Так, разработка физиологии пищеварения. И. П. Павловым дала возможность понять заболевания пищеварительного тракта и явилась основой диететики питания — мощного средства лечения; изучение витаминов позволило успешно бороться с такими заболеваниями, как цинга и рахит; открытие гормона поджелудочной железы — инсулина — и выяснение способов его получения способствовали сохранению жизни миллионов больных диабетом; исследование групп крови явилось основой такого важного для медицинской практики мероприятия, как переливание крови.

Медицина в свою очередь дает физиологии чрезвычайно много ценного материала. Изучение различных заболеваний человека способствует ! пониманию механизма многих нормальных физиологических процессов и выяснению функций некоторых органов. И. П. Павлов по этому поводу писал: «Мир патологических явлений представляет собой бесконечный ряд всевозможных, особенных, т. е. не имеющих места в нормальном течении жизни, комбинаций физиологических явлений. Это, бесспорно, как бы ряд физиологических опытов, делаемых природой и жизнью, это часто такие сочетания явлений, которые долго не пришли бы в голову современным физиологам и которые иногда даже не могли бы быть нарочно воспроизведены техническими средствами современной физиологии».

Вопрос №2

Вклад отечественных учёных в развитие мировой физиологии. И.М.Сеченов, И.П.Павлов, В.Ф. Овсянников, Л.А. Орбели, П.К.Анохин.

Выдающийся вклад в развитие рефлекторной теории, которая является одной из основных теоретических концепций физиологии и медицины, внес великий русский ученый, выдающийся представитель российской физиологической школы и основоположник научной психологии Иван Михайлович Сеченов (1829-1905).

И.М.Сеченов первым выдвинул идею о рефлекторной основе психической деятельности и убедительно доказал, что "все акты сознательной и бессознательной жизни по способу происхождения суть рефлексы".

Открытое им центральное (сеченовское) торможение (1863) впервые продемонстрировало, что наряду с процессом возбуждения существует другой активный процесс - торможение, без которого немыслима интегративная деятельность центральной нервной системы.

Классическим обобщением исследований И.М.Сеченова явился его труд "Рефлексы головного мозга" (1863), который И.П.Павлов назвал "гениальным взмахом русской научной мысли". Суть его лаконично выражена в первоначальных названиях, измененных по требованию цензуры: "Попытка свести способ происхождения психических явлений на физиологические основы" и "Попытка ввести физиологические основы в психические процессы".

Исследования Павлова в области физиологии сердечно-сосудистой и пищеварительной систем и высших отделов центральной нервной системы являются классическими.

В 1897 г. вышли в свет его "Лекции о работе главных пищеварительных желез", явившиеся обобщением научных исследований в области пищеварения - практически заново созданного им раздела физиологии. Несмотря на языковый барьер, работы И.П.Павлова и его сотрудников по Институту экспериментальной медицины стали известны во всем мире. В Каролинском институте (Швеция), который с 1901 г. получил право присуждения Нобелевских премий по физиологии и медицине, имя И.П.Павлова часто называлось в списках кандидатов в лауреаты. Однако вызывало вопрос одно обстоятельство: сам И.П.Павлов редко фигурировал в качестве соавтора в работах своих сотрудников, и Каролинский институт направил в Петербург своего представителя профессора Карла Тигерштеда для того, чтобы выяснить, кто же возглавляет столь плодотворную научную деятельность этого коллектива. В результате в 1904 г. И.П.Павлов был удостоен Нобелевской премии по физиологии и медицине "в знак признания его работ по физиологии пищеварения, которые позволили изменить и расширить наши знания в этой области".

Исходя из тезиса "для естествоиспытателя - все в методе", И.П.Павлов ввел в практику физиологических исследований метод хронического эксперимента, благодаря которому стало возможным изучение целостного, практически здорового животного.

Опыты на "хронически оперированных" животных проводились физиологами и до Павлова. Однако они не были полноценными либо по замыслу, либо по методике выполнения. Так, метод изолированного "малого желудочка", предложенный Р.Гейденгайном (Heidenhain, Rudolf Peter Heinrich, 1834-1897), лишал изолированный участок иннервации. Метод хронического эксперимента, разработанный И.П.Павловым, позволил ему экспериментально обосновать принцип нервизма - идею о решающей роли нервной системы в регуляции функционального состояния и деятельности всех органов и систем организма.

Методологической основой его концепции явились три основных принципа: единство структуры и функции, детерминизм, анализ и синтез. Изучая поведение животных, И.П.Павлов выявил рефлексы нового типа, которые формируются и закрепляются при определенных условиях окружающей среды. Павлов назвал их условными, в отличие от уже известных прирожденных рефлексов, которые имеются от рождения у всех животных данного вида (их Павлов назвал безусловными). Было показано также, что условные рефлексы вырабатываются в коре больших полушарий головного мозга, что сделало возможным экспериментальное изучение деятельности коры больших полушарий в норме и патологии. Результатом этих исследований явилось создание учения о высшей нервной деятельности - одного из величайших достижении естествознания XX в.

Деятельность И.П.Павлова и созданной им научной школы составила эпоху в развитии физиологии.

Овсянников В.Ф

Ему принадлежат труды по изучению механизма нервной регуляции дыхания и кровообращения; в 1871 установил наличие сосудодвигательного центра в продолговатом мозгу кролика. Под руководством О. проводились исследования по выяснению механизма трофич. влияния нервной системы на организм, подготовившие почву для дальнейшего развития учения о трофич. функции нервной системы.

Орбели Л.А

Последовательно применяя принципы дарвинизма в изучении физиологических функций, О. развил новое научное направление — эволюционную физиологию. Особое внимание уделял применению эволюционных принципов при изучении всех звеньев нервной системы животных и человека. Исследуя симпатическую нервную систему, выявил её адаптационно-трофическую функцию, чем способствовал решению вопроса о роли симпатических нервов в организме. Обосновал новое представление о функции мозжечка,показав, что мозжечок не только управляет моторной координацией, но и регулирует вегетативные функции организма. Большой вклад сделан О. в разработку проблемы боли и в физиологию анализаторов. Наряду с детальным изучением отдельных рецепторных аппаратов О. исследовал взаимодействие афферентных (чувствительных) систем. Изучая деятельность центральной нервной системы, особое внимание уделял влиянию подкорковых центров на функциональное состояние коры головного мозга. Активно способствовал развитию физиологии человека, особенно в связи с проблемами жизнедеятельности в необычных и экстремальных условиях

Анохин П.К

Основные работы посвящены изучению деятельности целого организма и особенно головного мозга на основе разработанной им теории функциональной системы. Применение этой теории к эволюции функций дало возможность А. сформулировать понятие системогенеза как общей закономерности эволюционного процесса.

Фундаментальные труды по нейрофизиологии - механизмам условного рефлекса и внутреннего торможения, онтогенезу нервной системы и др. Изучал деятельность целостного организма на основе разработанной им теории функциональных систем (начиная с 1935), к-рая способствовала развитию системного подхода в биологии и кибернетике.

Кровь

  1. Внешняя и внутренняя среда организма. Понятие о гомеостазе и его физиологических механизмах

Гомеоста́з (др.-греч. ὁμοιοστάσις от ὁμοιος — одинаковый, подобный и στάσις — стояние, неподвижность) — саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия. Стремление системы воспроизводить себя, восстанавливать утраченное равновесие, преодолевать сопротивление внешней среды.

Механизмы гомеостаза: обратная связь

Когда происходит изменение в переменных, наблюдаются два основных типа обратной связи, или фидбэка, на которые реагирует система:

Отрицательная обратная связь, выражающаяся в реакции, при которой система отвечает так, чтобы изменить направление изменения на противоположное. Так как обратная связь служит сохранению постоянства системы, это позволяет соблюдать гомеостаз.

Терморегуляция — другой пример отрицательной обратной связи. Когда температура тела повышается (или понижается) терморецепторы в коже и гипоталамусе регистрируют изменение, вызывая сигнал из мозга. Данный сигнал, в свою очередь, вызывает ответ — понижение температуры (или повышение).

Положительная обратная связь, которая выражается в усилении изменения переменной. Она оказывает дестабилизирующий эффект, поэтому не приводит к гомеостазу. Положительная обратная связь реже встречается в естественных системах, но также имеет своё применение.

Например, в нервах пороговый электрический потенциал вызывает генерацию намного большего потенциала действия. Свёртывание крови и события при рождении можно привести в качестве других примеров положительной обратной связи.

Устойчивым системам необходимы комбинации из обоих типов обратной связи. Тогда как отрицательная обратная связь позволяет вернуться к гомеостатическому состоянию, положительная обратная связь используется для перехода к совершенно новому (и, вполне может быть, менее желанному) состоянию гомеостаза, — такая ситуация называется «метастабильность». Такие катастрофические изменения могут происходить, например, с увеличением питательных веществ в реках с прозрачной водой, что приводит к гомеостатическому состоянию высокой эвтрофикации (зарастание русла водорослями) и замутнению.

  1. Объем и состав крови человека (гематокрит). Основные физиологические константы крови.

У человека кровь составляет 6—8% от массы тела, т. е. в среднем 5—6 л. Определение количества крови в организме заключается в сле­дующем: в кровь вводят нейтральную краску, радиоактивные изо­топы или коллоидный раствор и через определенное время, когда вводимый маркер равномерно распределится, определяют его кон­центрацию. Зная количество введенного вещества, легко рассчитать количество крови в организме. При этом следует учитывать, рас­пределяется ли вводимый субстрат в плазме или полностью про­никает в эритроциты. В дальнейшем определяют гематокритное число, после чего производят расчет общего количества крови в организме.

           Состав плазмы крови

 

Плазма представляет собой жидкую часть крови желтоватого цвета, слегка опалесцирующую, в состав которой входят различные соли (электролиты), белки, липиды, углеводы, продукты обмена, гор­моны, ферменты, витамины и растворенные в ней газы.

. В то же время концентрация глюкозы, белков, всех катионов, хлора и гидрокар­бонатов удерживается в плазме на довольно постоянном уровне и лишь на короткое время может выходить за пределы нормы. Зна­чительные отклонения этих показателей от средних величин на длительное время приводят к тяжелейшим последствиям для орга­низма, зачастую несовместимым с жизнью. Содержание же других составных элементов плазмы — фосфатов, мочевины, мочевой кис­лоты, нейтрального жира может варьировать в довольно широких пределах, не вызывая расстройств функции организма. В общей сложности минеральные вещества плазмы составляют около 0,9%. Содержание глюкозы в крови 4,5—6,5 ммоль/л.

Растворы, имеющие одинаковое с кровью осмотическое давление, получили название изотонических, или физиологических. К таким растворам для теплокровных животных и человека относится 0,9% раствор натрия хлорида и 5% раствор глюкозы. Растворы, имеющие большее осмотическое давление, чем кровь, называются гиперто­ническими, а меньшее — гипотоническими.

Для обеспечения жизнедеятельности изолированных органов и тканей, а также при кровопотере используют растворы, близкие по ионному составу к плазме крови (

Физико-химические свойства крови

 

Цвет крови. Определяется наличием в эритроцитах особого бел­ка — гемоглобина. Артериальная кровь характеризуется ярко-крас­ной окраской, что зависит от содержания в ней гемоглобина, на­сыщенного кислородом (оксигемоглобин). Венозная кровь имеет тем­но-красную с синеватым оттенком окраску, что объясняется наличием в ней не только окисленного, но и восстановленного гемоглобина. Чем активнее орган и чем больше отдал кислорода тканям гемоглобин, тем более темной выглядит венозная кровь.

Относительная плотность крови. Колеблется от 1,058 до 1,062 и зависит преимущественно от содержания эритроцитов. Относи­тельная плотность плазмы крови в основном определяется концен­трацией белков и составляет 1,029—1,032.

Вязкость крови. Определяется по отношению к вязкости воды и соответствует 4,5—5,0. Вязкость крови зависит главным образом от содержания эритроцитов и в меньшей степени от белков плазмы. Вязкость венозной крови несколько больше, чем артериальной, что обусловлено поступлением в эритроциты СО2, благодаря чему не­значительно увеличивается их размер. Вязкость крови возрастает при опорожнении депо крови, содержащей большее число эритро­цитов. Вязкость плазмы не превышает 1,8—2,2. При обильном белковом питании вязкость плазмы, а, следовательно, и крови может повышаться.

Осмотическое давление крови. Осмотическим давлением назы­вается сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более кон­центрированный раствор. Осмотическое давление крови вычисляют криоскопическим методом с помощью определения депрессии (точки замерзания), которая для крови составляет 0,56—0,58°С. Депрессия молярного раствора (раствор, в котором растворена 1 грамм-моле­кула вещества в 1 л воды) соответствует 1,86°С. Подставив значения в уравнение Клапейрона, легко рассчитать, что осмотическое дав­ление крови равно приблизительно 7,6 атм.

Поддержание постоянства осмотического давления играет чрез­вычайно важную роль в жизнедеятельности клеток.

Онкотическое давление. Является частью осмотического и за­висит от содержания крупномолекулярных соединений (белков) в растворе. Хотя концентрация белков в плазме довольно велика, общее количество молекул из-за их большой молекулярной массы относительно мало, благодаря чему онкотическое давление не пре­вышает 30 мм рт.ст. Онкотическое давление в большей степени зависит от альбуминов (80% онкотического давления создают аль­бумины), что связано с их относительно малой молекулярной массой и большим количеством молекул в плазме.

Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике. Поэтому кровезамещающие растворы должны содержать в своем составе коллоидные вещества, способные удерживать воду.

При снижении концентрации белка в плазме развиваются отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани.

Температура крови. Во многом зависит от интенсивности обмена веществ того органа, от которого оттекает кровь, и колеблется в пределах 37—40°С. При движении крови не только происходит некоторое выравнивание температуры в различных сосудах, но и создаются условия для отдачи или сохранения тепла в организме.

Концентрация водородных ионов и регуляция рН крови. В нор­ме рН крови соответствует 7,36, т. е. реакция слабоосновная. Колебания величины рН крови крайне незначительны. Так, в условиях покоя рН артериальной крови соответствует 7,4, а ве­нозной — 7,34. В клетках и тканях рН достигает 7,2 и даже 7,0, что зависит от образования в них в процессе обмена веществ «кислых» продуктов метаболизма. При различных физиологических состояниях рН крови может изменяться как в кислую (до 7,3), так и в щелочную (до 7,5) сторону. Более значительные откло­нения рН сопровождаются тяжелейшими последствиями для орга­низма. Так, при рН крови 6,95 наступает потеря сознания, и если эти сдвиги в кратчайший срок не ликвидируются, то неми­нуема смерть. Если же концентрация ионов Н+ уменьшается и рН становится равным 7,7, то наступают тяжелейшие судороги (тетания), что также может привести к смерти.

Суспензионная устойчивость крови (скорость оседания эритро­цитов — СОЭ). Кровь представляет собой суспензию, или взвесь, так как форменные элементы ее находятся в плазме во взвешенном состоянии. Взвесь эритроцитов в плазме поддерживается гидрофиль­ной природой их поверхности, а также тем, что эритроциты (как и другие форменные элементы) несут отрицательный заряд, благо­даря чему отталкиваются друг от друга. Если отрицательный заряд форменных элементов уменьшается, что может быть обусловлено адсорбцией таких положительно заряженных белков, как фибрино­ген, γ-глобулины, парапротеины и др., то снижается электростати­ческий «распор» между эритроцитами. При этом эритроциты, склеиваясь друг с другом, образуют так называемые монетные столбики..

Величина СОЭ зависит от возраста и пола. У новорожденных СОЭ равна 1—2 мм/ч, у детей старше 1 года и у мужчин — 6—12 мм/ч, у женщин — 8—15 мм/ч, у пожилых людей обоего пола — 15—20 мм/ч. Наибольшее влияние на величину СОЭ ока­зывает содержание фибриногена: при увеличении его концентрации более 4 г/л СОЭ повышается. СОЭ резко увеличивается во время беременности, когда содержание фибриногена в плазме значительно возрастает. Повышение СОЭ наблюдается при воспалительных, ин­фекционных и онкологических заболеваниях, а также при значи­тельном уменьшении числа эритроцитов (анемия). Уменьшение СОЭ у взрослых людей и детей старше 1 года является неблагоприятным признаком.

Величина СОЭ зависит в большей степени от свойств плазмы, чем эритроцитов. Так, если эритроциты мужчины с нормальной СОЭ поместить в плазму беременной женщины, то эритроциты мужчины оседают с такой же скоростью, как и у женщин при беременности.

  1. Характеристика форменных элементов крови, их роль в организме. Методы определения количества эритроцитов и лейкоцитов

Эритроциты

 

Эритроциты, или красные кровяные диски, впервые обнару­жил в крови лягушки Мальпиги (1661), а Левенгук (1673) показал, что они также присутствуют в крови человека и млекопитающих.

В крови человека эритроциты имеют преимущественно форму двояковогнутого диска. Поверхность диска в 1,7 раза больше, чем поверхность тела такого же объема, но сферической формы; при этом диск умеренно изменяется без растяжения мембраны клетки. Несомненно, форма двояковогнутого диска, увеличивая поверхность эритроцита, обеспечивает транспорт большего количества различных веществ. Кроме того, такая форма позволяет эритроцитам закреп­ляться в фибриновой сети при образовании тромба. Но главное преимущество заключается в том, что форма двояковогнутого диска обеспечивает прохождение эритроцита через капилляры. При этом эритроцит перекручивается в узкой средней части, его содержимое из более широкого конца перетекает к центру, благодаря чему эритроцит свободно входит в узкий капилляр. Форма эритроцитов здоровых людей весьма вариабельна — от двояковогнутой линзы до тутовой ягоды.

Эритроцит окружен плазматической мембраной, структура ко­торой мало отличается от таковой других клеток. Наряду с тем, что мембрана эритроцита проницаема для катионов Na+ и К+, она особенно хорошо пропускает 02, СО2, Сl- и HCO3-. Цитоскелет в виде проходящих через клетку трубочек и микрофиламентов в эритроците отсутствует, что придает ему эластичность и деформи­руемость — столь необходимые свойства при прохождении через узкие капилляры.

Размеры эритроцита весьма изменчивы, но в большинстве случаев их диаметр равен 7,5—8,3 мкм, толщина — 2,1 мкм, площадь поверхности — 145 мкм2, объем — 86 мкм3.

В   норме   число   эритроцитов у мужчин равно 4—5*1012/л, или 4 000 000—5 000 000 в 1 мкл. У женщин число эритроцитов меньше и, как правило, не превышает 4,5*1012/л. При беременности число эритроцитов может снижаться до 3,5-1012/л и даже до 3,0*1012 /л, и это многие исследователи считают нормой.

У человека с массой тела 60 кг общее число эритроцитов равняется 25 триллионам. Если положить все эритроциты одного человека один на другой, то получится «столбик» высотой более 60 км.

В норме число эритроцитов подвержено незначительным коле­баниям. При различных заболеваниях количество эритроцитов мо­жет уменьшаться. Подобное состояние носит название «эритропения» и часто сопутствует малокровию или анемии. Увеличение числа эритроцитов обозначается как «эритроцитоз».

 

Цветовой показатель

 

О содержании в эритроцитах гемоглобина судят по так назы­ваемому цветовому показателю, или фарб-индексу (Fi, от farb — цвет, index — показатель) — относительной величине, характе­ризующей насыщение в среднем одного эритроцита гемоглобином. Fi — процентное соотношение гемоглобина и эритроцитов, при этом за 100% (или единиц) гемоглобина условно принимают величину, равную 166,7 г/л, а за 100% эритроцитов — 5*10 /л. Если у человека содержание гемоглобина и эритроцитов равно 100%, то цветовой показатель равен 1. В норме Fi колеблется в пределах 0,75—1,0 и очень редко может достигать 1,1. В этом случае эритроциты называются нормохромными. Если Fi менее 0,7, то такие эритроциты недонасыщены гемоглобином и называются гипохромными. При Fi более 1,1 эритроциты име­нуются гиперхромными. В этом случае» объем эритроцита значительно увеличивается, что позволяет ему содержать большую концентрацию гемоглобина. В результате создается ложное впе­чатление, будто эритроциты перенасыщены гемоглобином. Гипо- и гиперхромия встречаются лишь при анемиях. Определение цве­тового показателя важно для клинической практики, так как позволяет провести дифференциальный диагноз при анемиях раз­личной этиологии.

Лейкоциты

 

Лейкоциты, или белые кровяные тельца, представляют собой образования различной формы и величины. По строению лейкоциты делят на две большие группы: зернистые, или гранулоциты, и незернистые, или агранулоциты. К гранулоцитам относятся нейтрофилы, эозинофилы и базофилы, к агранулоцитам — лимфоциты и моноциты. Свое наименование клетки зернистого ряда получили от способности окрашиваться красками: эозинофилы воспринимают кислую краску (эозин), базофилы — щелочную (гематоксилин), а нейтрофилы — и ту, и другую.

В норме количество лейкоцитов у взрослых людей колеблется от 4,5 до 8,5 тыс. в 1 мм3, или 4,5—8,5*109/л.

Увеличение числа лейкоцитов носит название лейкоцитоза, уменьшение — лейкопении. Лейкоцитозы могут быть физиологиче­ские и патологические, тогда как лейкопении встречаются только при патологии.

 

Лейкоцитарная формула

 

В норме и патологии учитывается не только количество лей­коцитов, но и их процентное соотношение, получившее наименование лейкоцитарной формулы, или лейкограммы (табл. 6.3).

 

Таблица 6.3. Лейкоцитарная формула здорового человека, %

 

Гранулоциты

Агранулоциты

нейтрофилы

базофилы

 

 

эозинофилы

 

 

лимфоциты

 

 

моноциты

 

 

юные

палочко-ядерные

сегменто-ядерные

0—1

1—4

45—65

0—1

1—4

25—40

2—8

 

В крови здорового человека могут встречаться зрелые и юные формы лейкоцитов, однако в норме обнаружить их удается лишь у самой многочисленной группы — нейтрофилов. К ним относятся юные и палочкоядерные нейтрофилы. Юные нейтрофилы, или миелоциты, имеют довольно крупное бобовидное ядро, палочкоядер­ные — содержат ядро, не разделенное на отдельные сегменты. Зре­лые, или сегментоядерные, нейтрофилы имеют ядро, разделенное на 2 или 3 сегмента. Чем больше сегментов в ядре, тем старее нейтрофил. Увеличение количества юных и палочкоядерных нейт­рофилов свидетельствует об омоложении крови и носит название сдвига лейкоцитарной формулы влево, снижение количества этих клеток свидетельствует о старении крови и называется сдвигом лейкоцитарной формулы вправо. Сдвиг влево часто наблюдается при лейкозах (белокровие), инфекционных и воспалительных забо­леваниях.

 

6.2.2.3. Характеристика отдельных видов лейкоцитов

 

Нейтрофилы. Созревая в костном мозге, задерживаются в нем на 3—5 дней, составляя костномозговой резерв гранулоцитов.

Лейкопоэз осуществляется экстраваскулярно и лейкоциты, в том числе и нейтрофилы, попадают в сосудистое русло благодаря аме­бовидному движению и выделению протеолитических ферментов, способных растворять белки костного мозга и капилляров. В цир­кулирующей крови нейтрофилы живут от 8 ч до 7 сут. Находящиеся в кровотоке нейтрофилы могут быть условно разделены на 2 группы: 1) свободно циркулирующие и 2) занимающие краевое положение в сосудах. Между обеими группами существует динамическое рав­новесие и постоянный обмен. Следовательно, в сосудистом русле нейтрофилов содержится приблизительно в 2 раза больше, чем определяется в вытекающей крови.

Предполагают, что разрушение нейтрофилов происходит за пре­делами сосудистого русла. По-видимому, все лейкоциты уходят в ткани, где и погибают. Обладая фагоцитарной функцией, нейтро­филы поглощают бактерии и продукты разрушения тканей. В составе нейтрофилов содержатся ферменты, разрушающие бактерии. Ней­трофилы способны адсорбировать антитела и переносить их к очагу воспаления, принимают участие в обеспечении иммунитета.

Под влиянием продуктов, выделяемых нейтрофилами, усили­вается митотическая активность клеток, ускоряются процессы ре­парации, стимулируется гемопоэз и растворение фибринового сгу­стка.

Базофилы. В крови базофилов очень мало (40—60 в 1 мкл) однако в различных тканях, в том числе сосудистой стенке, содер­жатся тучные клетки, иначе называемые «тканевые базофилы». Функция базофилов обусловлена наличием в них ряда биологически активных веществ. К ним в первую очередь принадлежит гистамин, расширяющий кровеносные сосуды. В базофилах содержатся противосвертывающее вещество гепарин, а также гиалуроновая кислота, влияющая на проницаемость сосудистой стенки.Особо важную роль играют эти клетки при аллергических реакциях (брон­хиальная астма, крапивница, глистные инвазии, лекарственная бо­лезнь и др.), когда под влиянием комплекса антиген — антитело происходит дегрануляция базофилов и биологически активные со­единения поступают в кровь, обусловливая клиническую картину перечисленных заболеваний.

Количество базофилов резко возрастает при лейкозах, стрессовых ситуациях и слегка увеличивается при воспалении.

Эозинофилы. Длительность пребывания эозинофилов в кровотоке не превышает нескольких часов, после чего они проникают в ткани, где и разрушаются. Эозинофилы обладают фагоцитарной активно- стью. Особенно интенсивно они фагоцитируют кокки. В тканях эозинофилы скапливаются преимущественно в тех органах, где со­держится гистамин — в слизистой оболочке и полслизистой основе желудка и тонкой кишки, в легких. Эозинофилы захватывают ги­стамин и разрушают его с помощью фермента гистаминазы. В со­ставе эозинофилов находится фактор, тормозящий выделение гистамина тучными клетками и базофилами. Эозинофилы играют важ­ную роль в разрушении токсинов белкового происхождения, чужеродных белков и иммунных комплексов.

Чрезвычайно велика роль эозинофилов, осуществляющих цитотоксический эффект, в борьбе с гельминтами, их яйцами и личин­ками. В частности, при контакте активированного эозинофила с личинками происходит его дегрануляция с последующим выделением большого количества белка и ферментов, например пероксидаз, на поверхность личинки, что приводит к разрушению последней. Уве­личение числа эозинофилов, наблюдаемое при миграции личинок, является одним из важнейших механизмов в ликвидации гельминтозов.

Содержание эозинофилов резко возрастает при аллергических заболеваниях, когда происходит дегрануляция базофилов и выделе­ние анафилактического хемотаксического фактора, который привле­кает эозинофилы. При этом эозинофилы выполняют роль «чистиль­щиков», фагоцитируя и инактивируя продукты, выделяемые базо­филами.

В эозинофилах содержатся катионные белки, которые активируют компоненты калликреин-кининовой системы и влияют на сверты­вание крови. Предполагают, что катионные белки, повреждая эн­дотелий, играют важную роль при развитии некоторых видов па­тологии сердца и сосудов.

При тяжело протекающих инфекционных заболеваниях число эозинофилов резко снижается, а иногда при подсчете лейкоци­тарной формулы они вообще не выявляются (развивается анэозинопения).

Моноциты. Циркулируют до 70 ч, а затем мигрируют в ткани, где образуют обширное семейство тканевых макрофагов. Функции их весьма многообразны. Моноциты являются чрезвычайно актив­ными фагоцитами, распознают антиген и переводят его в так на­зываемую иммуногенную форму, образуют биологически активные соединения — монокины (действующие в основном на лимфоциты), играют существенную роль в противоинфекционном и противора­ковом иммунитете, синтезируют отдельные компоненты системы комплемента, а также факторы, принимающие участие в сосудисто-тромбоцитарном гемостазе, процессе свертывания крови и рас­творении кровяного сгустка.

Лимфоциты. Как и другие виды лейкоцитов, образуются в ко­стном мозге, а затем поступают в сосудистое русло. Здесь одна популяция лимфоцитов направляется в вилочковую железу, где превращается в так называемые Т-лимфоциты (от слова thymus).

Популяция Т-лимфоцитов гетерогенна и представлена следующими классами клеток. Т-киллеры, или убийцы (от англ. tukill — убивать), осуществляющие лизис клеток-мишеней, к которым можно отнести возбудителей инфекционных болезней, грибки, микобактерии, опухолевые клетки и др. Т-хелперы, или помощники имму­нитета. Различают ТТ-хелперы, усиливающие клеточный имму­нитет, и ТВ-хелперы, облегчающие течение гуморального имму­нитета. Т-амплифайеры усиливают функцию Т- и В-лимфоцитов, однако в большей степени влияют на Т-лимфоциты. Т-супрессоры — лимфоциты, препятствующие иммунному ответу. Различают Т—Т-супрессоры, подавляющие клеточный иммунитет, и ТВ-супрессоры, угнетающие гуморальный иммунитет. Т-дифференцирующие, или Td-лимфоциты, регулируют функцию стволовых кроветворных клеток, т. е. влияют на соотношение эритроцитарного, лейкоцитар­ного и тромбоцитарного (мегакариоцитарного) ростков костного моз­га. Т-контрсупрессоры препятствуют действию Т-супрессоров и, следовательно, усиливают иммунный ответ. Т-клетки памяти хра­нят информацию о ранее действующих антигенах и таким образом регулируют так называемый вторичный иммунный ответ, который проявляется в более короткие сроки, так как минует основные стадии этого процесса.

Другая популяция лимфоцитов образует В-лимфоциты (от слова bursa), окончательное формирование которых у человека и млекопитающих, по-видимому, происходит в костном мозге или системе лимфоидно-эпителиальных образований, расположен­ных по ходу тонкой кишки (лимфоидные, или пейеровы бляшки и др.).

Большинство В-лимфоцитов в ответ на действие антигенов и цитокинов переходит в плазматические клетки, вырабатывающие антитела и потому именуемые антителопродуцентами. Среди В-лимфоцитов также различают В-киллеры, В-хелперы и В-супрессоры.

В-киллеры выполняют те же функции, что и Т-киллеры. Что касается В-хелперов, то они способны представлять антиген, уси­ливать действие Td-лимфоцитов и Т-супрессоров, а также участ­вовать в других реакциях клеточного и гуморального иммунитета. Функция В-cynpeccopoв заключается в торможении пролиферации антителопродуцентов, к которым принадлежит основная масса В-лимфоцитов.

Метод подсчета в камере. Взятие и разведение крови производят пробирочным методом. В пробирку (лучше видалевскую) вносят 0,4 мл разводящей жидкости и 0,02 мл капиллярной крови. Полученное разведение практически считается равным 1 : 20. В качестве разводящей жидкости обычно употребляют 3—5%-ный раствор уксусной кислоты, подкрашенной метиленовым синим (уксусная кислота лизирует эритроциты, метиленовый синий окрашивает ядра лейкоцитов). Перед заполнением камеры Горяева пробирку с разведенной кровью тщательно встряхивают. Камеру заполняют так же, как для подсчета эритроцитов.

Лейкоцитов гораздо меньше, чем эритроцитов (1—2 на большой квадрат), поэтому для точности подсчет производят в 100 больших квадратах (неразграфленных). Расчет: в 100 больших квадратах (1600 малых) сосчитано а лейкоцитов. Помня, что объем малого квадрата равен 1/4000 мм3, а кровь разведена в 20 раз, рассчитывают количество лейкоцитов в 1 мкл крови: 4000 ґ 20 и делят на 1600 = а х 1/2. Практически для получения действительного содержания лейкоцитов в 1 мкл крови достаточно полученное при подсчете число разделить пополам и приписать 2 нуля. В среднем ошибка метода составляет ± 7%.

  1. Морфо-функциональные особенности эритроцита как клетки крови. Физиологический эритроцитоз, механизмы его развития.

Эритроциты – красные кровяные тельца, содержащие дыхательный пигмент – гемоглобин. Эти безъядерные клетки образуются в красном костном мозге, а разрушаются в селезенке. В зависимости от размеров делятся на нормоциты, микроциты и макроциты. Примерно 85 % всех клеток имеет форму двояковогнутого диска или линзы с диаметром 7,2–7,5 мкм. Такая структура обусловлена наличием в цитоскелете белка спектрина и оптимальным соотношением холестерина и лецитина. Благодаря данной форме эритроцит способен переносить дыхательные газы – кислород и углекислый газ.

Важнейшими функциями эритроцита являются:

1) дыхательная;2) питательная;3) ферментативная;4) защитная;5) буферная.

Гемоглобин участвует в иммунологических реакциях.

Дыхательная функция связана с наличием гемоглобина и бикарбоната калия, за счет которых осуществляется перенос дыхательных газов.

Питательная функция связана со способностью мембраны клеток адсорбировать аминокислоты и липиды, которые с током крови транспортируются от кишечника к тканям.

Ферментативная функция обусловлена присутствием на мембране карбоангидразы, метгемоглобинредуктазы, глютатионредуктазы, пероксидазы, истинной холинэстеразы и др.

Защитная функция осуществляется в результате оседания токсинов микробов и антител, а также за счет присутствия факторов свертывания крови и фибринолиза.

Поскольку эритроциты содержат антигены, то их используют в иммунологических реакциях для выявления антител в крови.

Эритроциты являются самыми многочисленными форменными элементами крови. Так, у мужчин в норме содержится 4,5–5,5 × 1012/л, а у женщин – 3,7–4,7 × 1012/л. Однако количество форменных элементов крови изменчиво (их увеличение называется эритроцитозом, а при уменьшение – эритропенией).

Эритроциты обладают физиологическими и физико-химическими свойствами:

1) пластичностью;2) осмотической стойкостью;3) наличием креаторных связей;

4) способностью к оседанию;5) агрегацие6) деструкцией.

Пластичность во многом обусловлена строением цитоскелета, в котором очень важным является соотношение фосфолипидов и холестерина. Это соотношение выражается в виде липолитического коэффициента и в норме составляет 0,9. Пластичность эритроцитов – способность к обратимой деформации при прохождении через узкие капилляры и микропоры. При снижении количества холестерина в мембране наблюдается снижение стойкости эритроцитов.

Осмотическое давление в клетках немного выше, чем в плазме, за счет внутриклеточной концентрации белков. Также на осмотическое давление оказывает влияние и минеральный состав (в эритроцитах преобладает калий и снижено содержание ионов Na). За счет наличия осмотического давления обеспечивается нормальный тургор.

В настоящее время установлено, что эритроциты являются идеальным переносчиками, поскольку обладают креаторными связями, транспортируют различные вещества и осуществляют межклеточное взаимодействие.

Способность к оседанию обусловлена удельным весом клеток, который выше, чем все плазмы крови. В норме она невысока и связана с наличием белков альбуминовой фракции, которые способны удерживать гидратную оболочку эритроцитов. Глобулины являются лиофобными коллоидами, которые препятствуют образованию гидратной оболочки. Соотношение альбуминовой и глобулиновой фракций крови (белковый коэффициент) определяет скорость оседания эритроцитов. В норме он составляет 1,5–1,7.

При уменьшении скорости кровотока и увеличении вязкости наблюдается агрегация. При быстрой агрегации образуются «монетные столбики» – ложные агрегаты, которые распадаются на полноценные клетки с сохраненной мембраной и внутриклеточной структурой. При длительном нарушении кровотока появляются истинные агреганты, вызывающие образование микротромба.

Деструкция (разрушение эритроцитов) происходит через 120 дней в результате физиологического старения. Оно характеризуется:

1) постепенным уменьшением содержания липидов и воды в мембране;

2) увеличенным выходом ионов K и Na;

3) преобладанием метаболических сдвигов;

4) ухудшением способности к восстановлению метгемоглобина в гемоглобин;

5) понижением осмотической стойкости, приводящей к гемолизу.

Стареющие эритроциты за счет понижения способности к деформации застревают в миллипоровых фильтрах селезенки, где поглощаются фагоцитами. Около 10 % клеток подвергаются разрушению в сосудистом русле.

Эритроцитоз -- это увеличение в крови количества эритроцитов свыше 6*10в12 в 1 л и концентрации гемоглобина свыше 170 г/л.

Эритроцитоз подразделяют на абсолютный и относительный.

Абсолютный эритроцитоз -- это повышение содержания эритроцитов и гемоглобина в единице объема крови вследствие усиления эритропоэза. По этиологии выделяют приобретенный и наследственный абсолютный эритроцитоз.

Приобретенный абсолютный эритроцитоз возникает в результате увеличения продукции эритропоэтина преимущественно в почках. Это может быть вызвано следующими причинами:

1) нарушениями нейрогуморальной регуляции -- возбуждением симпатической части нервной системы, гиперфункцией ряда эндокринных желез.

2) гипоксической, дыхательной, циркуляторной гипоксией -- в случае горной болезни, недостаточности внешнего дыхания и кровообращения

3) местной гипоксией почек вследствие их ишемии (гидронефроз, стеноз почечных артерий);

4) гиперпродукцией эритропоэтинов некоторыми опухолями (гипернефрома, рак печени и др.).

Кроме того, абсолютный эритроцитоз развивается при истинной полицитемии (эритремия, или болезнь Вакеза), которая является разновидностью хронического лейкоза.

Причиной возникновения наследственного абсолютного эритроцитоза может быть генетически обусловленный дефект глобина в молекуле гемоглобина или дефицит в эритроцитах 2,3-дифосфоглицерата, являющегося регулятором оксигенации и дезоксигенации гемоглобина. При этом повышается сродство гемоглобина к кислороду и уменьшается его отдача тканям (кривая диссоциации оксигемоглобина сдвинута влево). Развивается гипоксия, стимулируется продукция эритропоэтинов, под влиянием которых усиливается эритропоэз.

  1. Гемоглобин, строение и свойства. Количество и метод определения. Виды и соединения гемоглобина. Цветовой показатель, его определение.

Основные функции эритроцитов обусловлены наличием в их составе особого белка хромопротеида — гемоглобина. Молеку­лярная масса гемоглобина человека равна 68 800. Гемоглобин состоит из белковой (глобин) и железосодержащей (гем) частей. На 1 мо­лекулу глобина приходится 4 молекулы гема.

В крови здорового человека содержание гемоглобина составляет 120—165 г/л (120—150 г/л для женщин и 130—160 г/л для мужчин). У беременных содержание гемоглобина может понижаться до 110 г/л, что не является патологией.

Основное назначение гемоглобина — транспорт О2 и СО2. Кроме того, гемоглобин обладает буферными свойствами, а также способ­ностью связывать некоторые токсичные вещества.

Гемоглобин человека и различных животных имеет разное стро­ение. Это касается белковой части — глобина, так как гем у всех представителей животного мира имеет одну и ту же структуру. Гем состоит из молекулы порфирина, в центре которой расположен ион Fe2+, способный присоединять О2. Структура белковой части гемо­глобина человека неоднородна, благодаря чему белковая часть раз­деляется на ряд фракций. Большая часть гемоглобина взрослого человека (95—98%) состоит из фракции А (от лат. adultus — взрослый); от 2 до 3% всего гемоглобина приходится на фракцию А2; наконец, в эритроцитах взрослого человека находится так на­зываемый фетальный гемоглобин (от лат. fetus — плод), или гемоглобин F, содержание которого в норме подвержено значительным колебаниям, хотя редко превышает 1—2%. Гемоглобины А и А2 обнаруживаются практически во всех эритроцитах, тогда как ге­моглобин F присутствует в них не всегда.

Гемоглобин F содержится преимущественно у плода. К моменту рождения ребенка на его долю приходится 70—90%. Гемоглобин F имеет большее сродство к О2, чем гемоглобин А, что позволяет тканям плода не испытывать гипоксии, несмотря на относительно низкое напряжение О2 в его крови. Эта приспособительная реакция объясняется тем, что гемоглобин F труднее вступает в связь с 2,3-дифосфоглицернновой кислотой, которая уменьшает способность гемоглобина переходить в оксигемоглобин, а следовательно, и обес­печивать легкую отдачу О2 тканям.

Гемоглобин обладает способностью образовывать соединения с О2, СО2 и СО. Гемоглобин, присоединивший О2, носит наименование оксигемоглобина (ННbО2); гемоглобин, отдавший О2, называется восстановленным, или редуцированным (ННb). В артериальной кро­ви преобладает содержание оксигемоглобина, от чего ее цвет при­обретает алую окраску. В венозной крови до 35% всего гемоглобина приходится на ННb. Кроме того, часть гемоглобина через аминную группу связывается с СО2, образуя карбогемоглобин (ННbСО2), благодаря чему переносится от 10 до 20% всего транспортируемого кровью СО2.

Гемоглобин способен образовывать довольно прочную связь с СО. Это соединение называется карбоксигемоглобином (ННЬСО). Сродство гемоглобина к СО значительно выше, чем к О2, поэтому гемоглобин, присоединивший СО, неспособен связываться с О2. Од­нако при вдыхании чистого О2 резко возрастает скорость распада карбоксигемоглобина, чем пользуются на практике для лечения отравлений СО.

Сильные окислители (ферроцианид, бертолетова соль, пероксид, или перекись, водорода и др.) изменяют заряд от Fe2+ до Fe3+, в результате чего возникает окисленный гемоглобин — прочное сое­динение гемоглобина с О2, носящее наименование метгемоглобина. При этом нарушается транспорт О2, что приводит к тяжелейшим последствиям для человека и даже смерти.