Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

OTVET_NA_KOLOK_NOMER_1_FIZIKA-3

.docx
Скачиваний:
1209
Добавлен:
09.02.2015
Размер:
487.17 Кб
Скачать

Активность – число актов распада за единицу времени. А = dn/dt. А препарата тем больше, чем больше радиоактивных ядер. Единица измерения Беккерель ( БК) – 1 акт распада за сек.

Радиоактивность – явление самопроизвольного превращения некоторых атомных ядер в другие ядра с испусканием частиц. К радиоактивным излучениям относятся А-излучение, Б – излучение и Г – излучение. Эти радиоактивные частицы имеют разный заряд и по-разному отклоняются в магнитном поле.

В процессе излучения явления радиоактивности были обнаружены 3 вида лучей, испускаемых радиоактивными ядрами.

Альфа –распад состоит в самопроизвольном превращении ядра с испусканием -частиц (ядра гелия).

АZХ→ А-4Z-2Y+ 42

При -распаде дочернее ядро может образоваться в возбужденном состоянии. В эжтом случае энергия возбужденного ядра чаще всего выделяется в виде -кванта. Поэтому альфа-распад сопровождается -излучением.

Бета-распад состоит в самопроизвольном превращении ядра с испусканием электронов (или позитронов).

АZХ→ АZ+1Y + 0-1β +ν

Где ν – обозначение частицы антинейтрино. Электрон образуется вследствие внутриядерного превращения нейтрона в протон.

Гамма излучение имеет электромагнитную природу и представляет собой фотоны с длиной волны λ≤10-10 м

Излучение этого типа сопровождает не только -распад, но и более сложные ядерные реакции.

Взаимодействие с веществом:

Заряженная частица при прохождении через вещество теряет свою энергию вследствие ионизационного торможения. При этом её кинетическая энергия расходуется на возбуждение и ионизацию атомов среды.Для количественной характеристики взаимодействия заряженной частицы с веществом используют величины:

  1. линейная плотность ионизации, i, число пар ионов, образующихся на единице ути пробега частицы: i=dn/dl

  2. линейная тормозная способность вещества (S) – энергия, теряемая заряженной частицей на единице пути пробега: S=dE/dl

  3. средний линейный пробег заряженной ионизирующей частицы (R) – расстояние между началом и концом пробега частицы в данном веществе.

Характерные особенности взаимодействие различных видов излучения с веществом:

Альфа- излучение:

По мере продвижения альфа-частицы в среде I сначала возрастает (при уменьшении скорости возрастает время, которое она проводит вблизи молекулы среды, поэтому вероятность ионизации увеличивается), а при завершении пробега (х=R) резко убывает, что связано с уменьшением скорости движения. Когда энергия частицы становится меньше энергии, необходимой для ионизации, образлование ионов прекращается. График зависимости линейной плотности ионизации от пути, пройденного альфа-частицей в среде:

Ионизация и возбуждение являются первичными процессами. Вторичные: увеличение скорости молекулярно-теплового движения, характеристическое рентгеновское излучение, радиолюминисценция, химические процессы.

Бета-излучение. Вызывает ионизацию, возбуждение, рентгеновское излучение (при торможении электронов), характерное черенковское излучение, когда скорость движения электрона в среде превышает скорость распространения света в этой среде.

Гамма-излучение вызывает незначительную первичную ионизацию, когерентное и некогерентное рассеяние, ионизирующий фотоэффект, образование электронно-позитронных пар, фотоядерные реакции, обусловленные взаимодействием кванта с ядром.

Радиоактивный распад – это статистическое явление. Пусть за малый интервал времени dt распадается dN ядер. Это число прапорционально интервалу времени dt, а также общему числу N радиоактивных ядер:

dN=-λNdt, где λ – постоянная распада, пропорциональная вероятности распада радиоактивного ядра т различная для разных радиоактивных ядер убывает со временем. Интегрируем полученное выражение и получаем lnN/N0=-λt. N= N0e-λt.

Это и есть основной закон радиоактивного распада: за равный промежуток времени распадается одинаковая доля начального количества ядер.

- процессы радиоактивного распада для двух веществ λ1>λ2.

17. Дозиметрия.Поглощенная,экспозиционная и биологическая дозы. Связь мощности экспозиционной дозы с активностью радиоактивного препарата.

Дозиметрией называют раздел ядерной физики и измерительной техники, в которой изучают величины, характеризующие действие ионизирующего излучения на вещества, а так же методы и приборы для их измерения. К ионизирующим излучениям относятся рентгеновское и гамма – излучение, потоки альфа-частиц, электроны, позитронов и т д.

Поглощенная доза (D) - величина, равная отношению энергии ∆Е, переданной элементу облучаемого вещества, к массе m этого элемента: D=∆Е /m. В Си единицей поглощенной дозы является грей (Гр). 1 Гр соответствует дозе излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемная единица 1рад=10-2 Гр

Экспозиционная доза излучения (Х) характеризует ионизирующее действие рентгеновского и γ-излучения в воздухе, окружающим облучаемое тело. В СИ единицей экспозиционной дозы является Кл/кг. В СИ единицей экспозиционной дозы является Кл/кг.

1Кл/кг соответствует экспозиционной дозе фотонного излучения, при которой в результате ионизации 1кг сухого воздуха (н.у.) образуются ионы с зарядом 1Кл каждого знака. Единицей мощности экспозиционной дозы является 1А/кг, а внесистемной единицей : 1Р/с. Так как доза излучения прапорциональна падающему ионизирующему излучению, то между излученной и экспозиционной дозами должна быть пропорциональная зависимость: D=fХ, где f – некоторый переходный коэффициент, зависящий от облучаемого вещества и энергии фотонов.

Эквивалентная доза – (Н) используется для оценки действия ионизирующего излучения на биологические объекты; она имеет ту же размерность, что и поглощенная доза излучения, но название другое. В СИ: Зиверт [Зв], 1Зв=1Дж/кг

Внесистемная единица: 1бер=10-2 Зв. Между экспозиционной и поглощенными дозами есть связь: H=KD, где К – коэффициент качества (показывает во сколько раз эффективность биологического действия данного вида излучения больше, чем фотонного, при одинаковой дозе излучения в тканях).

Мощность дозы – величина, определяющая дозу, полученную объектом за единицу времени. При равномерном действии излучения мощность дозы N численно равна отношению дозы D ко времени t, в течение которого действовало ионизирующее излучение: N=D/t.

Единицей мощности дозы излучения является грей (Гр), который соответствует дозе излучения, при которой облученному веществу массой 1кг передается энергия ионизирующего излучения 1Дж; мощность дозы излучения выражается в Гр/сек. Внесистемная единица дозы излучения – рад (1 рад=10-2 Гр=100эрг/г), её мощности рад в секунду.

Экспозиционная доза излучения (Х) характеризует ионизирующее действие рентгеновского и γ-излучения в воздухе, окружающим облучаемое тело. В СИ единицей экспозиционной дозы является Кл/кг.

1Кл/кг соответствует экспозиционной дозе фотонного излучения, при которой в результате ионизации 1кг сухого воздуха (н.у.) образуются ионы с зарядом 1Кл каждого знака. Единицей мощности экспозиционной дозы является 1А/кг, а внесистемной единицей : 1Р/с. Так как доза излучения пропорциональна падающему ионизирующему излучению, то между излученной и экспозиционной дозами должна быть пропорциональная зависимость: D=fХ, где f – некоторый переходный коэффициент, зависящий от облучаемого вещества и энергии фотонов. Для воды и мягких тканей человека f=1, следовательно доза излучения в радах численно равна соответствующей экспозиционной дозе в рентгенах.

Связь мощности экспозиционной дозы с активностью радиоактивного препарата:

Из источника γ-фотоны вылетают по всем направления. Число этих фотонов, пронизывающих 1м2 поверхности некоторой сферы в 1с, пропорционально активности А и обратно пропорциональна площади поверхности сферы (4πr2)/ Мощность экспозиционной дозы (Х/t) в объеме V зависит от числа фотонов, так как именно они вызывают ионизацию: Х/t=kγA/r2

Где kγ - которая характерна для данного радионуклида

18 Материя и ее виды. Переход одного вида материи в другой Реакции аннигиляции и рождения пары.

Материя: обладает множеством свойств к их числу относятся: движение, пространство и время являющиеся атрибутами материи. Материя вечна и бесконечна, она никогда не имела начала во времени и пространстве и не будет иметь конца. Важным свойством материи является способность к взаимопревращению различных видов материи друг в друга.

Три основных вида материи: Вещество, антивещество, поле.

К веществу относятся элементарные частицы (исключая фотоны) атомы, молекулы.

Структурные уровни материи 1) элементарные частицы 2) атомно-молекулярный уровень 3) все макротела, жидкости и газы 4) космические объекты 5) биологический уровень, живая природа 6) социальный уровень – общество.

Аннигиля́ция — реакция превращения частицы и античастицы в какие-либо иные частицы, отличные от исходных.

Аннигия – Электрон – позитронная пара ( е- + е+) = 2 гамма

Дает два фотона при низких энергиях сталкивающихся е- и е+. При энергиях порядка сотен МЭВ, в процессе аннигиляции е- и е+ пары рождаются адроны

19 Шкала электромагнитных волн. Свойства ЭМ волн в различных диапазонах. Механизмы излучения ЭМ волн в радио, ИК, видимом, УФ, рентгеновском и гамма диапазонах.

Из теории Максвела вытекает, что различные ЭМ – волны имеют общую природу. В связи с этим все Эм – волны целесообразно представить на единой шкале. Вся шкала условно подразделена на 6 диапазонов: 1) радиоволны, 2) инфракрасные, 3) видимые, 4) УФ, 5) рентгеновские, 6) гамма излучение

Свойства ЭМ – волн в различных диапазонах: РВ – нагрев ткани( токи проводимости), ИК – возрастает количество колебаний следовательно происходит нагрев ткани, В , УФ – фотобиологич. Процессы(фотосинтез), R и гамма – когерентное, некогерентное рассеяние. Гамма – рождение пары ( е- + е+)

Радиоволны обусловлены переменными токами в проводниках. ИК, В, УФ – излучения – исходят из атомов, молекул и быстрых заряженных частиц. R – излучение возникает при внутриатомных процессах. Гамма –излучение имеет ядерное происхождение. Наиболее коротковолновое УФ – излучение перекрывается длинноволновым рентгеновским.

Соседние файлы в предмете Физика