Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Биология 39 вопросов

.docx
Скачиваний:
35
Добавлен:
09.02.2015
Размер:
140.5 Кб
Скачать

1. Предмет, методы и задачи биологии. Биология (от греч. bios — жизнь, logos — наука) — наука о жизни, об общих закономерностях существования и развития живых существ. Предметом ее изучения являются живые организмы, их строение, функции, развитие, взаимоотношения со средой и происхождение. Биология — естественная наука. Как и другие науки, она возникла и всегда развивалась в связи с желанием человека познать окруж. его мир, а также в связи с матер. условиями жизни общества, развитием общественного производства, медицины, практическими потребностями людей. В наше время биология характеризуется исключительно широким перечнем разрабатываемых фундаментальных проблем, начиная с исследований элементарных клеточных структур и реакций, протекающих в клетках, и заканчивая познанием процессов, развернутых и развивающихся на глобальном (биосферном) уровне. Новейший революционный этап в развитии биологии — это создание методологии генетической инженерии, которая открыла принципиально новые возможности для проникновения вглубь биологических процессов с целью дальнейшей характеристики живой материи и создания научной картины мира. Появление генетической инженерии привело к созданию ряда совершенно новых социальных и этических проблем естественных наук. Классификация биологических наук. Биология — это комплексная наука, ставшая в наше время такой в результате дифференциации и интеграции разных биологических наук. Самыми старыми биологическими науками являются зоология и ботаника, изучающие животных и растения соответственно. В результате интеграции наук возникли биохимия, биофизика, радиобиология, цитогенетика, космическая биология и другие науки. Методы исследований. Как известно, новые теоретические представления и продвижение познания вперед в любой науке всегда определялись и определяются созданием и использованием новых методов исследования. Биология не является исключением из этого правила. Основными методами, используемыми в биологических науках, являются описательный, сравнительный, исторический и экспериментальный. Описательный метод является самым старым методом и основан на наблюдении организмов. Он заключается в сборе фактического материала и описании его. Использование этого метода позволило заложить основы биологических знаний. Достаточно вспомнить насколько успешным оказался этот метод в систематике и в создании науки о систематике организмов. Описательный метод широко используется и в наше время, особенно в зоологии, ботанике, цитологии, экологии и других науках. Изучение клеток с помощью светового или электронного микроскопа и описание выявленных при этом микроскопических или субмикроскопических особенностей в их строении представляет собой один из теперешних примеров использования описательного метода. Сравнительный метод заключается в сравнении изуч. организмов, их структур и функций между собой с целью выявления сходств и различий. Этот метод утвердился в биологии в XVIII в. и оказался очень плодотворным в решении многих крупнейших проблем. С помощью этого метода и в сочетании с описательным методом были получены сведения, позволившие в XVIII в. Метод широко был использован в XIX в. В обосновании теории эволюции, а также в перестройке ряда биологических наук на основе этой теории. Однако использование этого метода не сопровождалось выходом биологии за пределы описательной науки. Сравнительный метод широко используют в разных биолог. науках и в наше время. Во второй половине XIX в. благодаря Ч. Дарвину в биологию входит исторический метод, который позволил поставить на научные основы исследование закономерностей появления и развития организмов, становления структуры и функций организмов во времени и в пространстве. С введением этого метода в биологии немедленно произошли значительные качественные изменения. Исторический метод превратил биологию из науки чисто описательной в науку, объясняющую, как произошли и как функц-ют многообразные живые системы. В настоящее время исторический метод вышел, по существу, за рамки метода исследования. Он стал всеобщим подходом к изучению явлений жизни во всех биолог. науках. Экспериментальный метод заключается в активном изучении того или иного явления путем эксперимента. Метод широко вошел в биологию лишь в начале XIX в., причем через физиологию, в которой стали использовать большое количество инструментальных методик, позволявших регистрировать и количественно характеризовать приуроченность функций к структуре. Другим направлением, по которому в биологию вошел экспериментальный метод, оказалось изучение наследственности и изменчивости организмов. Здесь главнейшая заслуга принадлежит Г. Менделю, который в отличие от своих предшественников использовал эксперимент не только для получения данных об изучаемых явлениях, но и для проверки гипотезы, формулируемой на основе получаемых данных. В настоящее время экспериментальный метод характеризуется исключительными возможностями в изучении явлений жизни. Эти возможности определяются использованием микроскопии разных видов, в т.ч. электронную с техникой ультратонких срезов, биохимических методов, высокоразрешающего генетического анализа, иммунологических методов, маркировки эмбрионов, техники оплодотворения в пробирке, метода меченых атомов, и т. д. Успехи, достигнутые в результате использования экспериментального метода, сопровождались изменениями в подходах к изучению явлений жизни. Продвижение вперед биологических наук в XX в. во многом определилось также возникновением и развитием системно-структурного подхода к изучению организации и функций живых организмов, анализом и синтезом получаемых данных о структуре и функциях исследуемых объектов. Применение биологических знаний. Прежде всего биологические знания имеют познавательное значение. Однако чрезвычайно велико и их практическое значение. Впервые практика стала формулировать свои заказы биологии с введением в эту науку эксперимент. метода. На основе биологических знаний уже давно в промышленных условиях осуществляется микробиологический синтез многих органических кислот, которые широко используются в народном хозяйстве и медицине. В 40—50-е годы было создано пром. произв-во антибиотиков, а в начале 60-х годов — произв-во аминокислот. Важное место в микробиолог. пром-ти сейчас занимает произв-во ферментов. Микробиолог. пром-ть производит сейчас в больших количествах витамины и другие вещества. Наибольшие успехи в производстве различных веществ, в том числе лекарственных, связаны с генетической инженерией, составляющей сейчас основу биотехнологии. Развитие биотехнологии, теорет. основу кот. составляет биология, а методическую — генетическая инженерия, является новым этапом в развитии матер. произв-ва. Появление этой технологии есть один из моментов новейшей революции в производ. силах.

16. Общая характеристика хордовых животных. Многообразие хордовых. Хордовые являются главным типом животного царства. В этом типе насчитывают более 42 000 видов, обитающих в разных средах. Для хордовых характерен ряд специфических свойств. В частности, для них характерно наличие хорды (нотохорды), представляющей собой гибкую структуру стержневидной формы, тянущуюся вдоль тела в положении, занимаемом у позвоночных позвоночником. Хорда является осевым скелетом. Состоя из вакуолизированных клеток, она сохраняется всю жизнь лишь у низших организмов, но у высших в ходе развития замещается позвонками. Для хордовых характерно также наличие нервного пучка в виде трубки над хордой и пищеварительной трубки под хордой. Далее, для них характерно наличие в зародышевом состоянии или в течение всей жизни многочисленных жаберных щелей, открывающихся наружу из глоточного района пищеварительной трубки и являющихся органами дыхания. Как и полухордовые, хордовые являются вторичноротыми организмами. Хордовых классифицируют на подтипы Бесчерепные и Черепные, или Позвоночные. Бесчерепные представлены классом Ланцетники. Эти животные являются обитателями прибрежных участков морей. Наиболее известный представитель этого подтипа — ланцетник. Размеры его составляют несколько сантиметров в длину. У ланцетников отсутствуют выраженные голова, мозг, челюсти, сердце. Осевой скелет у этих животных представлен хордой. Способны к свободной локомоции, раздельнополы. Оплодотворение происходит в воде. В эволюционном плане ланцетники представляют вторую стадию в эволюции хордовых, которая предшествовала эволюции позвоночных. Позвоночные имеют очень совершенные покровы тела в виде кожи, состоящей из двух слоев (многослойного эпидермиса и кориума), производными которой являются чешуя, перья, волосы, когти и ногти. Во взрослом состоянии большинство позвоночных имеет костный скелет. Хорошо развиты голова, глаза, конечности. Мышечная система дифференцируется на поперечнополосатую и гладкую мускулатуру. Пищеварительная система очень сложна. Кишечник разделен на три отдела. Имеются печень и поджелудочная железа. Дыхательная система представлена жабрами или легкими. Кровеносная система замкнута, представлена многокамерным сердцем, сосудами в виде артерий и вен. Клеточный состав крови очень дифференцирован. Имеется незамкнутая лимфатическая система. Выделительная система очень совершенна. Она представлена парными почками и мочеточниками.

Характерной особенностью нервной системы, даже у низших позвоночных, является развитый мозг, а у высших форм — наличие мозговых полушарий. Нервная система подразделяется на центральную и периферическую. Развиты специализированные органы чувств (нос, глаза, уши). Развиты также железы внутренней секреции. Для позвоночных характерны раздельнополость (кроме некоторых видов круглоротых), выраженный половой диморфизм. Мужские и женские половые железы парные, осеменение наружное или внутреннее. Для некоторых позвоночных характерно развитие с метаморфозом. В пределах подтипа отмечается гигантское структурное и функциональное разнообразие организмов, что осложняет их классификацию и исключает пока единое мнение о количестве классов в этом подтипе. Однако наиболее распространенной является классификация, в которой выделяют классы Круглоротые, Хрящевые рыбы, Костные рыбы, Земноводные, или Амфибии, Пресмыкающиеся, или Рептилии, Птицы и млекопитающие, или Звери. Класс Круглоротые представлены примитивными животными, обитающими в морских и пресных водах умеренных широт обоих полушарий. Насчитывают свыше 40 видов. Наиболее известными организмами этого класса являются миноги и миксины.

Класс Хрящевые рыбы представлен обитателями в основном морей и океанов. Насчитывают около 730 видов этих рыб. Наиболее известными представителями этого класса являются акулы и скаты. Размеры хрящевых рыб составляют от нескольких миллиметров до нескольких метров в длину. Характерными особенностями их являются хрящевой скелет, кожа, покрытая плакоидными (зубовидными) чешуями, парные конечности — плавники, зубы, покрытые эмалью, 5-7 пар наружных жаберных щелей (у пластино-жаберных), отсутствие кожных костей и плавательного пузыря. Класс Костные рыбы в видовом составе довольно многочисленны (около 1500 видов). Являясь обитателями морских и пресных вод, они отличаются от хрящевых рыб тем, что имеют внутренний костный скелет, головные кости (черепную коробку, в которой размещен мозг), покров из костных чешуи незубовидного типа, плавательный пузырь (или легкое). Тело расчленено на голову, туловище и хвост. Внешние покровы представляют собой кожу.

Размеры костных рыб составляют от нескольких миллиметров до нескольких метров в длину.

Костных рыб классифицируют на подклассы Лопастеперые и Лучеперые. Предполагают, что костные рыбы произошли около 500 млн лет назад от предков, общих с круглоротыми. Их эволюция шла в направлении развития челюстей, жаберных дуг, парных плавников. Наибольшего разнообразия костные рыбы достигли к началу нашей эры, став одними из процветающих классов позвоночных. Одна из эволюционных ветвей лопастеперых представляла собой кистеперых рыб, которые дали затем начало первым наземным позвоночным. Современные рыбы на 95% представлены лучеперыми. Класс Земноводные объединяет примерно 4000 видов. Земноводные занимают промежуточное положение между водными и наземными животными. Всю жизнь или, по крайней мере, в личиночном состоянии земноводные так или иначе связаны с водой. Они обитают вблизи водоемов, во влажных местах или водоемах во всех районах мира. У них впервые появляется голос. В качестве наземных животных они примитивны, причем их несовершенство отражается на строении и функциях всех их систем органов. Покровы земноводных представлены голой кожей, покрытой слизью. Скелет разделен на шейный и крестцовый отделы. В черепе еще сохраняются остатки хрящевой ткани, характерной для кистеперых рыб. Грудной клетки и ребер нет, но уже имеются пятипалые передние и задние конечности, развиты плечевой и тазовый пояса конечностей. Мускулатура хорошо развита и состоит из мышц, двигательные функции которых специфичны. Земноводные раздельнополы, их система органов размножения существенно изменена по сравнению с этой системой у рыб. У самцов имеется пара семенников, у самок — пара яичников. Развитие происходит с метаморфозом. Из яиц выходят личинки (в воде), которые развиваются в головастиков.

Класс Пресмыкающиеся — это первые настоящие наземные позвоночные. Количество видов в этом классе достигает 7000. Обитают во многих зонах земного шара. Характерной особенностью их является то, что они размножаются на суше яйцами, дышат исключительно легкими, а кожа имеет роговые покрытия. Для яиц характерно наличие защитной оболочки (скорлупы) и большое количество желтка, что уже само по себе означает первое приспособление к жизни на суше. У организмов этого класса развились также оболочки, окружающие эмбрион (одна из этих оболочек есть амнион). Благодаря этим важным репродуктивным приспособлениям пресмыкающихся относят к амниотам (вместе с птицами и млекопитающими). У пресмыкающихся получили дальнейшее развитие пятипалые конечности. Впервые у них появляется кора больших полушарий.

Покровы тела представлены кожей, которая покрыта роговыми чешуйками, щитками или пластинками и не содержит слизистых желез. Такие свойства кожи обеспечивают независимость осмотического давления в теле от окружающей среды. Температура тела пресмыкающихся зависит от среды. Пресмыкающиеся раздельнополы, характеризуются выраженным половым диморфизмом. Одни пресмыкающиеся являются яйцекладущими, другие —живородящими. Широко развито яйцеживорождение. Пол генетически детерминируется лишь у некоторых видов ящериц, возможно, у всех змей. Однако у многих пресмыкающихся пол детерминируется не генетически, а факторами внешней среды, в частности, температурой. Например, у многих видов черепах действие высоких температур сопровождается появлением на свет лишь самок, низких температур — только самцов. Обратное положение отмечено у крокодилов и некоторых видов ящериц. Класс Птицы — эта систематическая группа представлена позвоночными животными, биологические и анатомические свойства которых определяются наличием у них приспособлений для полета и передвижений по твердому субстрату. Известно около 9000 видов. Обитают по всему земному шару, но наибольшее количество видов сосредоточено в тропиках. Наземная локомоция птиц является двуногой (задние конечности). Передние конечности видоизменены в крылья, имеющие рудименты трех пальцев. Туловище компактное с большой грудиной для крепления мышц крыльев. Кости черепа и скелета заполнены воздухом. Костный хвост уменьшен.

Скелет хорошо развит в области грудной клетки. Кости черепа сращены. Шейные позвонки очень подвижны. Поясничные, крестцовые и часть хвостовых позвонков также сращены.

Покровами тела служит тонкая кожа, не содержащая желез, кроме копчиковой железы у корня хвоста. Производными кожи являются перья на теле, роговые чешуи на конечностях и когти на концах пальцев. Температура тела постоянна (42—45°С). Птицы — раздельнополы с выраженным половым диморфизмом. Классификация птиц очень осложнена, т. к. нет единого мнения о количестве основных систематических единиц в этом классе.

Класс Млекопитающие, или Звери — это наиболее организованные, в основном наземные позвоночные животные, находящиеся на высшей стадии развития и обитающие во всех географических зонах. Они представляют собой современную процветающую группу животных. В этом классе насчитывают около 3200 видов. Для млекопитающих характерен ряд особенностей. Их детеныши выкармливаются молоком, которое вырабатывается специальными молочными железами. Плод развивается в матке. Благодаря совершенному развитию нервной системы и механизмов терморегуляции у них поддерживается постоянная температура тела, обеспечивающая их активность в любых климатических условиях.

Имеют волосяной или шерстный покров. Масса отдельных особей составляет от 2 г (землеройка-малютка) до 150 тонн (синий кит).

Покровы тела представлены кожей, которая состоит из многослойного эпидермиса и кориума, построенного из волокнистой соединительной ткани. Кожа снабжена многими потовыми и сальными железами. В подкожной клетчатке содержатся жировые клетки. Роговыми образованиями кожи являются волосы, ногти, когти, рога и копыта. У всех млекопитающих имеются молочные железы, которые представляют собой видоизмененные потовые железы. Осевой скелет характерен четким разделением позвоночника на шейный, грудной, поясничный, крестцовый и хвостовой отделы. Размножение половое, половые железы у особей обоих полов парные. Выражен половой диморфизм. Оплодотворение внутреннее. Млекопитающих классифицируют на подклассы Первозвери с отрядом Однопроходные и Настоящие звери с инфраклассами Низшие звери и Высшие звери с большим количеством отрядов. Однопроходные (утконос, ехидна, проехидна) являются обитателями Австралии и характеризуются тем, что подобно пресмыкающимся, они откладывают яйца. Низшие звери, или Сумчатые (кенгуру, сумчатый волк, сумчатый крот и другие), являются обитателями Австралии и Южной Америки. Не имея плаценты, рожденных детенышей вынашивают в сумке. Высшие звери являются плацентарными животными. Они чрезвычайно разнообразны (насекомоядные, рукокрылые, грызуны, хищные, ластоногие, китообразные, непарно- и парнокопытные, хоботные, приматы и другие). В эмбриональном онтогенезе питание плодов происходит через плаценту, детеныши рождаются развитыми, характеризуются двойной сменой зубов.

Для млекопитающих характерно чрезвычайное разнообразие в образе жизни. Различают наземных, подземных, водных и даже летающих животных (рукокрылых).

Расцвет плацентарных приходится на палеоцен (55-65 млн лет назад). Начиная с третичного периода, они являются преобладающей (процветающей) формой жизни на Земле.

38. Понятие о биогеоценозе. Биоценоз и биотоп. Биоценоз — исторически сложившаяся устойчивая совокупность популяций растений, животных, грибов и микроорганизмов, приспособленных к совместному обитанию на однородном участке территории или акватории. Термин «биоценоз» предложил немецкий зоолог К.Мебиус в 1877г. Приспособленность членов биоценоза к совместной жизни выражается в определенном сходстве их требований к важнейшим абиотическим условиям среды (освещенность, характер увлажнения почвы и воздуха, тепловой режим и т. д.) и в закономерных отношениях друг с другом. Связь между организмами необходима для осуществления их питания, размножения, расселения, защиты и т. д. Однако в ней кроется и определенная угроза и даже опасность для существования того или иного индивидуума. Биотические факторы среды, с одной стороны, ослабляют организм, с другой — составляют основу естественного отбора — важнейшего фактора видообразования. Составными частями биоценоза являются фитоценоз (устойчивое сообщество растений), зооценоз (совокупность взаимосвязанных видов животных), микоценоз(сообщество грибов) и микробоценоз (сообщество микроорганизмов). Понятия «экотоп» и «биотоп». Участок земной поверхности (суши или водоема) с однородными условиями обитания, занимаемый тем или иным биоценозом, называется биотопом. Климатоп (комплекс климатических факторов) и эдафотоп (почвенно-грунтовые условия) в совокупности составляют экотоп. Различия между этими понятиями в том, что биотоп — это условия среды, видоизмененные живыми организмами, а экотоп — первичный комплекс факторов физико-геогафической среды без участия живых существ. В пространственном отношении биотоп соответствует биоценозу. Границы биоценоза устанавливают по фитоценозу, имеющему легко распознаваемые черты. Кроме того, фитоценоз является главным структурным компонентом любого биоценоза, поскольку определяет видовой состав зоо-, мико- и микробоценозов. Таким образом, биогеоценоз — это однородный участок земной поверхности с определенным составом живых организмов (биоценоз) и определенными условиями среды обитания (биотоп), которые объединены обменом веществ и энергии в единый природный комплекс.

46. Экологические сукцессии: причины и механизмы. Экологическая сукцессия – поступательная динамика экосистемы – последовательный ряд изменений видовой и трофической структур экосистемы, всей ее организации, или последовательная смена экосистем. Сукцессия – смена одних видов другими за определенный промежуток времени. Сукцессии бывают первичными (экосистема возникает на безжизненном месте) и вторичными (сообщество развивается на месте уже существующего). В зависимости от причин сукцессии различают: Экзодинамические – вызванные внешними факторами – изменением климата, понижением уровня грунтовых вод, подъемом уровня мирового океана и т.п. Связаны в основном с действием механической адаптации экосистемы к факторам внешней среды. Эндодинамические - вызванные внутренним механизмом экосистемы. Приводятся в действие особыми законами, механизмами. На любом, даже безжизненном субстрате, рано или поздно расцветает жизнь. При этом типы сообществ, в данном пр-ве последовательно сменяют друг друга, постепенно усложняясь и увеличивая видовое разнообразие, формируя т.н. сукцессионный ряд, состоящий из последовательных стадий, отмечающих смену одного сообщества другим. Сукцессионный ряд заканчивается стадией зрелости, на которой экосистема изменяется очень мало - климаксными экосистемами. Вмешательство человека в природу ведет зачастую также к явлению дигрессии, когда климакс экосистемы достигается на более ранних стадиях сукцессии, вследствие чего экосистемы значительно упрощаются. Следует различать автотрофные и гетеротрофные сукцессии. Динамика гетеротрофов целиком подчинена динамике автотрофов - смена животных сообществ зависит от смены растительных сообществ. В гетеротрофных сукцессиях участвуют только животные (гетеротрофы, консументы). Гетеротрофная сукцессия предполагает обязательное наличие определённого запаса энергии, аккумулированной в органическом веществе. Она заканчивается вместе с исчерпанием ресурса энергии, то есть после полного разложения исходного субстрата. После этого экосистема перестает существовать (гниющее дерево).

Сукцессии бывают (P-производимая биомасса; R-расход на дыхание):

- автотрофные - растущий лес – P/R>1;

- гетеротрофные - расходуется больше вещества, чем производится – P/R<1;

- климаксная система - состояние равновесия – P/R=1.

49. Ноогенез как этап эволюции биосферы.

Биосфера ("bios" – жизнь и "sphaira" – шар) – область распространения жизни, включающая наряду с организмами и среду их обитания.

Сложная система, состоящая живой и неживой природы, часть атмосферы, литосферы и гидросфера, взаимосвязанные миграцией вещества и энергии. В первой половине ХХ века В. И. Вернадский в своих трудах разработал целостное учение о биосфере.

Этапы эволюции органического мира на Земле:

I. Биогенез – возникновение биотического круговорота веществ и биосферы, появление многоклеточных организмов, их эволюция и усложнение циклической структуры жизни.

II. Ноогенез – появление и развитие человеческого общества, превращение биосферы в ноосферу – новое состояние, при котором разумная деятельность человека становится главным фактором развития.

Ноосфера - это качественно новый этап эволюции биосферы, в котором законы природы тесно переплетаются с социально-экономическими законами развития общества. Основной предпосылкой перехода биосферы в ноосферу В. И. Вернадский считал научную мысль. «Наука есть максимальная сила создания ноосферы» - это главное обобщение

В. И. Вернадского в учении о биосфере.

47. Понятие о климаксном сообществе. Мутуализм в зрелом сообществе.

Многие виды сообществ постепенно меняют собственную среду обитания, так что рано или поздно условия меняются настолько, что перестают быть благоприятными для данного сообщества. Тогда на его месте складывается другое сообщество, которое, в свою очередь, тоже постепенно изменяет среду и тем самым "готовит себе могилу". Так сообщества сменяют друг друга до тех пор, пока не сложится устойчивый комплекс организмов, способный поддерживать собственный гомеостаз и не производящий необратимых изменений в окружающей среде. Такое сообщество называется "климаксным" , а последовательные этапы смены сообществ – сукцессией. Начальное сообщество, складывающееся, например, на пустыре или на гари после пожара, называется "пионерным", а промежуточные типы сообществ, складывающиеся на пути от пионерного сообщества к климаксному – "стадиальными". Стадиальные сообщества, сменяя друг друга, становятся все богаче, сложнее и сплоченнее. Климаксное сообщество – самое сложное и цельное, в нем животные и растения максимально взаимосвязаны и взаимозависимы. Именно в климаксных сообществах процветают самые высокоразвитые и конкурентоспособные организмы. Но они же – и самые требовательные к условиям внешней среды.

Понятно, что любой кризис, любое внешнее возмущение в первую очередь сказывается именно на климаксных сообществах. Именно поэтому во время великих экологических катастроф прошлого – массовых вымираний – в первую очередь разрушались верхние "этажи" сукцессии. И вместе с ними погибали "хозяева жизни" - самые сильные и "приспособленные" организмы. Мутуализм - взаимовыгодные отношения между организмами. Взаимодействия типа мутуализма часто характерны для видов с очень разными потребностями, они удачно дополняют друг друга. Преимущества, которые получает организм, вступающий в мутуалистические отношения, могут быть различны. Часто по крайней мере один из партнеров использует другого в качестве пищи, тогда как второй получает защиту от врагов или благоприятные для роста и размножения условия. Каждый из участников м. пары действует эгоистично, и выгодные отношения возникают лишь потому, что получаемая польза перевешивает затраты, требуемые на поддержание взаимоотношений.

29. Радиационное загрязнение среды и его последствия.

Радиоактивное загрязнение биосферы это превышение естественного уровня содержания в окружающей среде радиоактивных веществ. Оно может быть вызвано ядерными взрывами и утечкой радиоактивных компонентов в результате аварий на АЭС или других предприятиях, при разработке радиоактивных руд и т.п. При авариях на АЭС особённо резко увеличивается загрязнение среды

Радионуклидами. В настоящее врёмя, по данным Международного агентства по атомной энергетике (МАГАТЭ), число действующих в мире реакторов достигло 426 при их суммарной электрической мощности около 320 ГВт (17% мирового производства электроэнергии). Ядерная энергетика, при условии строжайшего выполнения необходимых требований, более или менее экологически чище по сравнению с теплоэнергетикой, поскольку исключает вредные выбросы в атмосферу (зола, диоксиды, углерода и серы, оксиды азота и др.).

Радиационные загрязнения, связанные с технологически нормальным

ядерным топливным циклом, имеют локальный характер и доступны для контроля,

изоляции и предотвращения эмиссий. Эксплуатация объектов атомной энергетики

сопровождается незначительным радиационным воздействием.

Наибольшее загрязнение атмосферы радиоактивными веществами

происходит в результате взрывов атомных и водородных бомб. Каждый такой

взрыв сопровождается образованием грандиозного облака радиоактивной пыли.

Взрывная волна огромной силы распространяет ее частицы во всех

направлениях, поднимая их более чем на 30 км. В первые часы после взрыва

осаждаются наиболее крупные частицы, несколько меньшего размера — влечение

5 суток, а мелкодисперсная пыль потоками воздуха переносится на тысячи

километров и оседает на поверхности земного шара в течение многих лет.

Основными источниками радиоактивного загрязнения Мирового океана

являются: - загрязнения от испытаний ядерного оружия (в атмосфере до 1963 г.)- загрязнения радиоактивными отходами, которые непосредственно сбрасываются в море;

- крупномасштабные аварии (ЧАОС, аварии судов с атомными реакторами);

- захоронение радиоактивных отходов на дне.

Воды Мирового океана загрязнены наиболее опасными радионуклидами цезия-137, стронция-90, церия-144, иттрия-91, ниобия-95, которые, обладая высокой биоаккумулирующей способностью, переходят по пищевым цепям, и концентрируются в морских организмах высших трофических уровней, создавая

опасность, как для гидробионтов, так и для человека.

В связи с широким использованием в народном хозяйстве радиоактивных

веществ появилась опасность загрязнения почв радионуклидами. В верхнем слое почвы концентрируются радиоактивные стронций и цезий, откуда они попадают в организм животных и человека. Лишайники северных зон

обладают повышенной способностью к аккумуляции радиоактивного цезия. Олени,

питающиеся ими, накапливают изотопы, а у населения, использующего в пищу

оленину, в организме в 10 раз больше цезия, чем у других северных

народов.

23. Основные периоды жизни человека. Понятие о геронтологии.

Выделим основные периоды формирования личности всякого человека. Онтогенез подразделяют на проэмбриональный, эмбриональный и постэмбриональный периоды. В случае человека, а иногда и высших животных, период развития до рождения часто называют пренатальным или антенатальным, после рождения — постнатальным.

В пределах эмбрионального периода различают стадии зиготы, дробления, бластулы, гаструлы, образования зародышевых листков, гистогенез и органогенез. Как отмечено выше, с учетом фактора времени у человека зародыш до момента формирования зачатков органов называют эмбрионом, а после этого вплоть до рождения называют плодом. У человека развитие эмбриона (зародыша) заканчивается к концу второго месяца. Начиная с 9-й недели, следует плодный период, характеризующийся дальнейшим ростом и развитием организма (плода) во внутриутробном состоянии вплоть до рождения. После появления организма на свет начинается его постнатальное развитие, которое у разных организмов протекает от нескольких дней до сотен лет в зависимости от их видовой принадлежности. Следовательно, продолжительность жизни — это видовой признак организмов, не зависящий от уровня их организации. В постэмбриональном онтогенезе различают ювенильный и пубертатный периоды, а также период старости, заканчивающийся смертью. Ювенильный период. Этот период определяется временем от рождения организма до полового созревания. Характерной особенностью роста в ювенильный период организмов, подверженных прямому развитию, является то, что происходит увеличение количества и размеров клеток, изменяются пропорции тела. Рост разных органов человека неравномерен. Например, рост головы заканчивается в детстве, ноги достигают пропорциональной величины примерно к 10 годам. Наружные половые органы очень быстро растут в возрасте 12—14 лет. Различают определенный и неопределенный рост. Определенный рост характерен для организмов, которые к определенному возрасту прекращают свой рост, например, насекомые, млекопитающие, человек. Пубертатный период. Этот период называют еще зрелым, и он связан с половой зрелостью организмов. Развитие организмов в этот период достигает максимума. Старость как этап онтогенеза. Старость является предпоследним этапом онтогенеза. Наиболее точно старость изучена у человека. Известны самые различные определения старости человека. В частности, одно из наиболее популярных определений заключается в том, что старость есть накопление последовательных изменений, сопровождающих повышение возраста организма и увеличивающих вероятность его болезней или смерти. Науку о старости человека называют геронтологией (от греч. geron — старик, старец, logos — наука). Ее задачей является изучение закономерностей возрастного перехода между зрелостью и смертью. Научные исследования в геронтологии распространяются на разные области, начиная с исследований изменения активности клеточных ферментов и заканчивая выяснением влияния психологических и социологических смягчений в стрессах среды на поведение старых людей. В случае человека различают физиологическую старость, старость, связанную с календарным возрастом, и преждевременное старение, обусловленное социальными факторами и болезнями. В соответствии с рекомендациями ВОЗ пожилым возрастом человека следует считать возраст порядка 60-75 лет, а старым в 75 лет и более. Старость человека характеризуется рядом внешних и внутренних признаков.

2. Нуклеопротеиды клетки как субстрат жизни.

Всеобщим методологич. подходом к пониманию сущности жизни в настоящее время является понимание жизни в качестве процесса, конечным результатом которого является самообновление, проявляющееся в самовоспроизведении. Все живое происходит только из живого, а всякая организация, присущая живому, возникает только из другой подобной организации. Следовательно, сущность жизни заключается в ее самовоспр-нии, в основе которого лежит координация физ. и хим. явлений и которое обеспечивается передачей генетической информации от поколений к поколениям. Именно эта информация обеспечивает самовоспр-ние и саморегуляцию живых существ. Поэтому жизнь — это качественно особая форма существования материи, связанная с воспр-нием. Явления жизни представляют собой форму движения материи, высшей по сравнению с физ. и хим. формами его существования. Живое построено из тех же хим. элементов, что и неживое (кислород, водород, углерод, азот, сера, фосфор, натрий, калий, кальций и другие элементы). В клетках они находятся в виде орг. соединений. Однако организация и форма существования живого имеет специфические особенности, отличающие живое от предметов неживой природы. В качестве субстрата жизни внимание привлекают нуклеиновые кислоты (ДНК и РНК) и белки. Нуклеиновые кислоты — это сложные химические соединения, содержащие углерод, кислород, водород, азот и фосфор. ДНК является генетическим материалом клеток, определяет химическую специфичность генов. Под контролем ДНК идет синтез белков, в котором участвуют РНК. Белки — это также сложные химические соединения, содержащие углерод, кислород, водород, азот, серу, фосфор. Молекулы белков характеризуются большими размерами, чрезвычайным разнообразием, которое создается аминокислотами, соедин. в полипептидных цепях в разном порядке. Большинство клеточных белков представлено ферментами. Они выступают также в роли структурных компонентов клетки. Каждая клетка содержит сотни разных белков, причем клетки того или иного типа обладают белками, свойственными только им. Поэтому содержимое клеток каждого типа характеризуется опред. белковым составом. Ни нуклеиновые кислоты, ни белки в отдельности не являются субстр. жизни. В настоящее время считают, что субстр. жизни являются нуклеопротеиды. Они входят в состав ядра и цитоплазмы клеток животных и растений. Из них построены хроматин (хромосомы) и рибосомы. Они обнаружены на протяжении всего органического мира — от вирусов до человека. Можно сказать, что нет живых систем, не содержащих нуклеопротеидов. Однако важно подчеркнуть, что нуклеопротеиды являются субстратом жизни лишь тогда, когда они находятся в клетке, функционируют и взаим-ют там. Вне клеток (после выделения из клеток) они являются обычными хим. соединениями. Следовательно, жизнь есть, главным образом, функция взаимодействия нуклеиновых кислот и белков, а живым является то, что содержит самовоспроизводящую молекулярную систему в виде механизма воспроизводства нуклеиновых кислот и белков. В отличие от живого различают понятие «мертвое», под которым понимают совокупность некогда существовавших орг-мов, утративших механизм синтеза нуклеиновых кислот и белков, т. е. спос-ть к молекулярному воспроизведению. Наконец, следует различать «неживое», т. е. ту часть материи, которая имеет неорганическое (абиотическое) происхождение и ничем не связана в своем образовании и строении с живыми организмами. Неживая материя в отличие от живого не способна поддерживать свою структурную организацию и использовать для этих целей внешнюю энергию. Обсуждая молекулы, рассматриваемые в качестве субстрата жизни, нельзя не отметить, что они подвергаются непрерывным превращениям во времени и пространстве. Достаточно сказать, что ферменты могут превратить любой субстрат в продукт реакции в исключительно короткое время. Поэтому определение нуклеопротеидов в качестве субстрата жизни означает признание последнего в качестве оч. подвижной сис-мы.

11. Вирусы как особая форма организации материи. Вирусы - это мельчайшие живые организмы, размеры которых варьируют в пределах примерно от 20 до 300 нм; в среднем они раз в пятьдесят меньше бактерий. Как уже говорилось, вирусы нельзя увидеть с помощью светового микроскопа (так как их размеры меньше полудлины световой волны), и они проходят через фильтры, которые задерживают бактериальные клетки. Часто задают вопрос: «А являются ли вирусы живыми?» Если живой считать такую структуру, которая обладает генетическим материалом (ДНК или РНК) и которая способна воспроизводить себя, то можно сказать, что вирусы живые. Если же живой считать структуру, обладающую клеточным строением, то ответ должен быть отрицательным. Следует также отметить, что вирусы не способны воспроизводить себя вне клетки-хозяина. Они находятся на самой границе между живыми и неживыми, и это лишний раз напоминает нам, что существует непрерывный спектр все возрастающей сложности, который начинается с простых молекул и кончается сложнейшими замкнутыми системами клеток. Вирусы могут воспроизводить себя только внутри живой клетки, поэтому они являются облигатными паразитами. Обычно они вызывают явные признаки заболевания. Попав внутрь клетки-хозяина, они «выключают» (инактивируют) хозяйскую ДНК и, используя свою собственную ДНК или РНК, дают клетке команду синтезировать новые копии вируса. Вирусы передаются из клетки в клетку в виде инертных частиц. Вирусы устроены очень просто. Они состоят из фрагмента генетического материала, либо ДНК, либо РНК, составляющей сердцевину вируса, и окружающей эту сердцевину защитной белковой оболочки, которую называют капсидом. Полностью сформированная инфекционная частица называется вирионом. У некоторых вирусов, таких, как вирусы герпеса или гриппа, есть еще и дополнительная липопротеидная оболочка, которая возникает из плазматической мембраны клетки-хозяина. В отличие от всех остальных организмов вирусы не имеют клеточного строения. Оболочка вирусов часто бывает построена из идентичных повторяющихся субъединиц - капсомеров. Из капсомеров образуются структуры с высокой степенью симметрии, способные кристаллизоваться. Это позволяет получить информацию об их строении как с помощью кристаллографических методов, основанных на применении рентгеновских лучей, так и с помощью электронной микроскопии. Как только в клетке-хозяине появляются субъединицы вируса, они сразу же проявляют способность к самосборке в целый вирус. Самосборка характерна и для многих других биологических структур, она имеет фундаментальное значение в биологических явлениях. У некоторых вирусов, например у вирусов свинки и гриппа, нуклеокапсид окружен оболочкой. Бактериофаги. Вирусы, которые нападают на бактерий, образуют группу так называемых бактериофагов. У некоторых бактериофагов имеется явно выраженная икосаэдрическая головка, а хвост обладает спиральной симметрией. Сложные вирусы. Некоторые вирусы, например рабдовирусы и вирусы оспы, имеют сложное строение.

17. Теория происхождения многоклеточности. Изучив огромный материал по зародышевому развитию губок, иглокожих, кишечнополостных, асцидий и других беспозвоночных, Мечников и Ковалевский пришли к выводам, позволившим обосновать идею единства происхождения всего органического мира. Продолжая эти работы, Мечников создал оригинальную теорию происхождения многоклеточных организмов, названную им теорией паренхимеллы, позже переименованной им в теорию фагоцителлы. Согласно теории Мечникова, первичной формой организации всех живых существ являлась некая примитивная паренхимелла, уже, впрочем, обладавшая важной способностью к внутриклеточному перевариванию. В процессе эволюции часть клеток паренхимеллы разделилась на поверхностные, за счет которых осуществлялось движение, а часть - на внутренние, сохранившие способность к внутриклеточному перевариванию. Из последних со временем образовалась прямая кишка. Теория Мечникова, несомненно, оказалась более обоснованной, чем общепринятая до того времени гипотеза гастреи немецкого биолога Э. Геккеля, который считал, что первичной формой многоклеточных мог быть некий организм, уже имевший первичную кишку. Подтверждение своим взглядам Мечников скоро нашел в открытом им необычном организме из группы червей планарий. Этот организм имел на месте кишечной полости сплошную массу клеток, переваривавших пищу. А открытый позднее исследователем С. Кентом особый жгутиковый колониальный организм по многим чертам строения совпадал с описанной Мечниковым гипотетической фагоцителлой.

42. Понятие об экологической нише. Принцип Гаузе. Живые существа – как растения, так и животные – многочисленны и разнообразны. Каждый вид занимает строго отведенное ему место в географическом пространстве с конкретным набором физических и химических параметров. Однако положение вида зависит не только от абиотических экологических факторов, но и от связей данного организма с другими организмами как в пределах своего вида, так и с представителями других видов. Следовательно, место, которое занимает вид в конкретной среде обитания, должно быть обусловлено не только территорией, но и быть связанным с потребностью в пище и функцией воспроизводства. Каждый из видов, равно как и конкретный организм, в сообществе (биоценозе) имеет свое собственное время пребывания и свое место, которые и отличают его от других видов. Во-первых, это ареал вида – распространение вида в географическом пространстве (географический аспект вида), во-вторых, местообитание вида (среда обитания или биотоп) – тип географического пространства по набору физических и химических параметров и (или) биотических характеристик, где обитает вид и, в-третьих, экологическая ниша, подразумевающая нечто большее, чем просто место, где обитает данный вид. Вид в различных частях ареала может занимать ряд различных местообитаний. Лучшее и меткое сравнительное определение экологической ниши и среды дали французские экологи Р. Виберт и К. Лаглер: среда – это адрес, по которому проживает данный организм, тогда как ниша дополнительно указывает на род его занятий на этом месте, его профессию. Экологическая ниша включает в себя не только физическое пространство, занимаемое организмом, но и функциональную роль организма в сообществе. Элтон различал ниши как позицию вида в зависимости от других видов в сообществе. Представление Элтона о том, что ниша не есть синоним местообитания получило широкое признание и распространение. Эти три аспекта экологической ниши (пространство, функциональная роль организма, внешние факторы) удобно обозначить как пространственную нишу (нишу места), трофическую нишу (функциональную нишу), в понимании Ч. Элтона, и многомерную нишу (учитывается весь объем и набор биотических и абиотических характеристик, гиперобъем). Экологическая ниша организма зависит не только от того, где он обитает, но включает также общую сумму его требований к окружающей среде. Организм не только испытывает на себе действие экологических факторов, но и сам предъявляет к ним свои требования. Конкурентное взаимодействие может касаться как пространства, биогенных элементов, использования света (деревья в лесу), так и процесса борьбы за самку, за пищу, равно как и зависимости от хищника, подверженности болезням и др. Обычно наиболее жесткая конкуренция наблюдается на межвидовом уровне. Она может привести к замене популяции одного вида популяцией другого вида, но может привести и к равновесию между двумя видами (обычно такое равновесие природой устанавливается в системе хищник-жертва). Наблюдение за поведением близкородственных организмов со сходным образом жизни и сходной морфологией показывает, что такие организмы стараются никогда не обитать в одном и том же месте. Если же близкородственные организмы живут в одном и том же месте, то они или будут использовать разные пищевые ресурсы, или вести активный образ жизни в разное время (ночь, день). Такое экологическое разделение близкородственных видов получило название принципа конкурентного исключения или принципа Гаузе по имени русского биолога, экспериментально показавшего действие этого принципа в 1932 году. В своих выводах Гаузе использовал концепцию Элтона о позиции вида в сообществе в зависимости от других видов.

31. Сигнальное значение абиотических факторов. Действие экологических факторов на организмы непостоянно во времени. Поэтому в большинстве случаев наблюдается цикличность действия факторов и, соответственно, цикличность в жизнедеятельности организмов. Периодичность в действии факторов приводит к существованию биологических ритмов. Природные биоритмы делятся на внешние (экзогенные) и внутренние (эндогенные). Экзогенные ритмы имеют геофизическую природу. По величине периода колебаний выделяют суточные, приливно-отливные, месячные, годичные и более длительные биоритмы. Внешними факторами–сигналами могут быть: температура, освещенность, влажность. Эндогенные ритмы связаны с автоколебаниями в пределах одного организма (например, изменение температуры тела в течение суток). Эти ритмы, в значительной мере, являются генетически обусловленными. Иначе говоря, эндогенные ритмы являются физиологическими. Эндогенные ритмы контролируются системами обратных связей внутри организма. В ходе эволюции многие экзогенные ритмы превратились в эндогенные, наследственно обусловленные. Например, некоторые суточные ритмы сохраняются даже при постоянстве внешних условий (суточная активность, изменение температуры тела). Однако периодичность физиологических процессов при отсутствии внешних сигналов несколько отличается от 24–часовой. Такие ритмы называются циркадными (околосуточными). Некоторые годичные ритмы могут также сохраняться при постоянстве внешних условий (например, цикличность размножения растений и животных в неволе). Однако периодичность этих процессов также несколько отличается от календарного года. Такие ритмы называются цирканными (окологодичными).

Фотопериодизм. Одним из наиболее важных экзогенных факторов является чередование светлого и темного времени суток (длина светового дня). Реакция организмов на сезонные изменения длины дня называется фотопериодизм. Фотопериодизм дает возможность организмам заранее подготовиться к изменениям среды. Иначе говоря, фотопериодизм – это реакция организмов на будущие события. У животных изменение длины светового дня определяет сроки размножения, миграции, подготовки к спячке или к другим формам покоя. У растений изменение длины светового дня определяет начало цветения, начало листопада, начало подготовки к глубокому покою. Длина светового дня, обеспечивающая переход в очередную фазу развития, называется критической. Различают два вида фотопериодической реакции: короткодневная (реакция на уменьшение продолжительности светового дня) и длиннодневная (реакция на увеличение продолжительности светового дня). Например, редис при увеличении светового дня (весной) образует корнеплоды, а при уменьшении светового дня (летом) – дает цветки и плоды. В то же время, часть организмов и их функций не зависят от длины дня (нейтральная фотопериодическая реакция). Это касается многих обитателей низких широт, организмов с коротким жизненным циклом. Кроме фотопериодизма существуют и другие виды периодических реакций, например, термопериодизм – реакция организмов на сезонные изменения среднесуточной температуры. Однако эти реакции менее выражены и не играют столь большой роли в жизни организмов, как фотопериодизм.

39. Видовая структура биогеоценоза. Одним из важнейших показателей структуры сообщества является видовой состав входящих в него организмов. Видовой состав сообщества определяется рядом факторов, важнейшие среди которых: географическое местоположение, определяющее состав флоры и фауны, особенности климата, тип ландшафта и его высота над уровнем моря, водный режим, возраст самого сообщества. В пределах отдельных континентов и климатических зон сходные по видовому составу сообщества формируются в районах, сходных по экологическим условиям. Между лесами на юге и полярными льдами на севере расположена обширная полоса безлесной местности – зона тундры. Факторами, определяющими состав населения тундры, являются: низкие температуры, короткий сезон вегетации, промерзший (за исключением тонкого слоя всего несколько сантиметров) грунт. Долевое участие каждого вида в сообществе различно. В сообществе, как правило, имеется несколько видов, представленных большим числом особей, или большой биомассой, и сравнительно много видов с низкой численностью. Виды с высокой численностью играют значительную роль в жизни сообщества, особенно так называемые виды-средообразователи. В лесных экосистемах, например, к ним относятся виды преобладающих древесных растений. От них зависят условия, необходимые для выживания других видов живых существ: трав, насекомых, птиц, зверей, мелких беспозвоночных и микроорганизмов лесной подстилки и др. В то же время редкие, как правило, стенобионтные виды часто оказываются лучшими индикаторами (показателями) состояния сообщества. Это связано с тем, что для поддержания жизни редких видов требуются строго определенные сочетания различных факторов (например, температуры, влажности, состава почв, определенных видов пищевых ресурсов).

В ходе сукцессии на основе конкурентных взаимодействий видов происходит постепенное формирование более устойчивых комбинаций, соответствующих конкретным абиотическим условиям среды. Примерами сукцессий могут быть смены видов при зарастании стоячих водоемов или барханных песков в пустыне. Последовательный ряд постепенно и закономерно сменяющих друг друга в сукцессии сообществ называется сукцессионной серией.

43. Продуктивность экосистем: валовая и чистая первичная продуктивность.

Весь запас энергии сосредоточен в массе органического вещества - биомассе, поэтому интенсивность образования и разрушения органического вещества на каждом из уровней определяется прохождением энергии через экосистему (биомассу всегда можно выразить в единицах энергии).

Скорость образования органического вещества называют продуктивностью.

Различают первичную и вторичную продуктивность. Энергия поступает в живую составляющую экосистемы через продуцентов. Скорость накопления энергии продуцентами в форме органического вещества, которое может быть использовано в пищу, называется первичной продуктивностью. Этим показателем определяется общий поток энергии через живую составляющую экосистемы, а значит, и количество (биомасса) живых организмов, которые могут существовать за ее счет в экосистеме. В первичной продуктивности различают валовую и чистую продуктивность. Валовая первичная продуктивность - это скорость, с которой растения накапливают химическую энергию при фотосинтезе. Часть ее они тратят на дыхание - поддержание собственной жизнедеятельности, которая затем в виде теплоты выделяется в окружающую среду и теряется для экосистемы. Скорость накопления органического вещества продуцентами за вычетом расхода на дыхание называется чистой первичной продуктивностью. Это энергия, которую могут использовать организмы следующих трофических уровней.

44. Понятие о вторичной продуктивности экосистем.

Весь запас энергии сосредоточен в массе органического вещества - биомассе, поэтому интенсивность образования и разрушения органического вещества на каждом из уровней определяется прохождением энергии через экосистему (биомассу всегда можно выразить в единицах энергии). Скорость образования органического вещества называют продуктивностью. Различают первичную и вторичную продуктивность. Скорость накопления органического вещества на уровнях консументов называется вторичной продуктивностью . Это энергия, которую могут использовать консументы следующего трофического уровня. Из рассмотренного механизма передачи энергии по цепи живого вещества в экосистеме видно, что в каждом звене пищевой цепи часть энергии - около 90 % - теряется. Поэтому длина пищевой цепи ограничивается размерами этих потерь и, как правило, составляет 3 - 4 уровня.

При этом с повышением трофического уровня его биомасса снижается, так как, во-первых, если фитофаги будут потреблять больше биомассы, чем ее производят продуценты, что например, имеет место при избыточном выпасе, то популяция продуцентов в конце концов исчезнет; во-вторых, существенная доля потребляемой консументами биомассы не усваивается и возвращается в экосистему в виде экскрементов, а из той, что усваивается, лишь несколько процентов идет на создание биомассы. Таким образом, в естественных экосистемах на высших трофических уровнях не может быть большой биомассы. Именно как нарушение этого закона следует рассматривать демографический взрыв популяции человека на планете Земля или фрагменты фантастических фильмов, когда по безжизненной каменной поверхности космического объекта бродят громадные чудовища.

48. Современная трактовка понятия биосферы, теория В.И. Вернадского.

Одно из величайших достижений естествознания XX в. – учение Вернадского о биосфере, области жизни, объединяющей в едином взаимодействии живые организмы (живое вещество) и косное вещество.

Вернадский постарался создать теоретически стройную концепцию перехода биосферы в ноосферу в результате разумных преобразований человеком - на основе науки - среды жизни. Центральным в этой концепции является понятие о живом веществе, которое В.И.Вернадский определяет как совокупность живых организмов. Кроме растений и животных, В.И.Вернадский включает сюда и человечество, влияние которого на геохимические процессы отличается от воздействия остальных живых существ, во-первых, своей интенсивностью, увеличивающейся с ходом геологического времени; во-вторых, тем воздействием, какое деятельность людей оказывает на остальное живое вещество.

Это воздействие сказывается прежде всего в создании многочисленных новых видов культурных растений и домашних животных. Такие виды не существовали раньше и без помощи человека либо погибают, либо превращаются в дикие породы. Поэтому Вернадский рассматривает геохимическую работу живого вещества в неразрывной связи животного, растительного царства и культурного человечества как работу единого целого. Поскольку живое вещество является определяющим компонентом биосферы, постольку можно утверждать, что оно может существовать и развиваться только в рамках целостной системы биосферы. Не случайно поэтому В.И.Вернадский считает, что живые организмы являются функцией биосферы и теснейшим образом материально и энергетически с ней связаны, являются огромной геологической силой, ее определяющей. Центральной темой учения о ноосфере является единство биосферы и человечества. Вернадский в своих работах раскрывает корни этого единства, значение организованности биосферы в развитии человечества. Это позволяет понять место и роль исторического развития человечества в эволюции биосферы, закономерности ее перехода в ноосферу.

Одной из ключевых идей, лежащих в основе теории Вернадского о ноосфере, является то, что человек не является самодостаточным живым существом, живущим отдельно по своим законам, он сосуществует внутри природы и является частью ее. Это единство обусловлено прежде всего функциональной неразрывностью окружающей среды и человека, которую пытался показать Вернадский как биогеохимик. Человечество само по себе есть природное явление и естественно, что влияние биосферы сказывается не только на среде жизни, но и на образе мысли. Необходимо иметь в виду, что задача созидания биосферы — это задача сегодняшнего дня. Ее решение связано с объединением усилий всего человечества, с утверждением новых ценностей сотрудничества и взаимосвязи всех народов мира. В нашей стране идеи учения о биосфере органично связаны с революционной перестройкой социалистического общества. Народовластие, демократические принципы общественной жизни, возрождение культуры, науки и народной жизни, коренной пересмотр ведомственного подхода к природопользованию и т. п.

Устремленность в будущее, таким образом,— характерная черта учения о биосфере, которое в современных условиях необходимо развивать со всех его сторон.

27. Основные типы биотических связей. Все организмы находятся между собой в самых различных отношениях, которые, в частности, проявляются в форме симбиоза (мутуализма, синойкии, комменсализма), хищничества, паразитизма, конкуренции и антагонизма.

Симбиоз — это очень распространенная форма во взаимоотношениях организмов, принадлежащих к разным видам. В рамках симбиоза различают мутуализм, комменсализм, хищничество и паразитизм. Мутуализм — это взаимодействие между двумя организмами разных видов, которое выгодно для каждого из них. Например, азотфиксирующие клубеньковые бактерии обитают на корнях бобовых растений, конвертируя атмосферный азот в форму, доступную для усвоения этими растениями. Следовательно, бактерии обеспечивают растения азотом. В свою очередь растения обеспечивают клубеньковые бактерии всеми необходимыми питательными веществами. Мутуализмом можно считать также взаимодействие между микроорганизмами, обитающими в толстом отделе кишечника человека, и самим человеком. Для микроорганизмов выгода определяется тем, что они обеспечивают свои питательные потребности за счет содержимого кишечника, а для человека выгода состоит в том, что микроорганизмы осуществляют дополнительное переваривание пищи и еще синтезируют крайне необходимый для него витамин К. В мире цветковых растений мутуализмом является опыление насекомыми растений и питание насекомых нектаром растений. Мутуализм значим и в «переработке» органических веществ. Синойкия (квартирантство) — сожительство, при котором особь одного вида использует особь другого вида только как жилище, не принося своему «живому дому» ни пользы, ни вреда. Комменсализм — это межвидовое взаимодействие между организмами, при котором один организм получает выгоду за счет другого, не повреждая его, тогда как другой организм от этого взаимодействия не имеет ни выгоды, ни ущерба. Хищничество — это особый способ жизни, при котором один организм (хищник) живет за счет другого (жертвы), убивая его. Хищничество наблюдается уже у простейших. Примеры хищничества высших животных в природе многочисленны. Убивая и поедая жертвы, хищники приносят вред популяциям организмов-жертв. Но хищничество иногда оказывается и полезным. Уменьшение численности хищников может привести к резкому возрастанию численности жертв. Иногда имеет место синхронный рост численности и хищников и жертв. Например, в северных широтах эта синхронность отмечается каждые несколько лет между численностями леммингов, мышей, с одной стороны, и питающихся ими песцов, лис и полярных сов, с другой. Паразитизм — это форма взаимоотношений организмов, при которой один (паразит) живет за счет другого (хозяина). Как правило, хозяину присущи большие размеры тела, чем паразиту. В отличие от хищников паразиты не должны убивать хозяев, иначе тем самым они убьют и себя. Поэтому паразиты вызывают болезнь хозяина, но смерть хозяина от этой болезни бывает лишь в очень редких случаях. Паразитизм очень широко распространен в природе, но его следует отличать от сапробиоза, при котором организм питается мертвым материалом другого организма, хотя некоторые сапробионты иногда могут стать паразитами. С эволюционной точки зрения наиболее результативными являются те паразиты, которые вызывают незначительные повреждения хозяина. Конкуренция — это взаимоотношение между организмами при использовании одинаковых жизненных ресурсов (пищи, света, территории и т. д.), которых, однако, недостаточно в определенных средах при значительном росте популяций. Конкуренция бывает как внутривидовой, так и межвидовой и сопровождается она борьбой за существование. Внутривидовая конкуренция является более ожесточенной, поскольку организмы нуждаются в одних и тех же ресурсах. Голод иногда у отдельных видов ведет к каннибализму. Конкуренция и борьба за существование играют большую роль в ограничении численности популяции. Их следствием является естественный отбор. Антагонизм — это форма взаимоотношений, когда один вид в процессе жизни угнетает другой. Формой антагонизма является антибиоз, который имеет место в случае бактерий и микроскопических грибов, когда организмы одного вида подавляют рост организмов другого вида или сразу нескольких видов. Эта подавляющая способность зависит от продукции организмами антибиотических видов веществ, получивших название антибиотиков.

30. Биологическое загрязнение среды и его последствия.

Под биологическим загрязнением среды чаще всего понимают загрязнение ее болезнетворными организмами, т.е. привнесение в экосистемы в результате хозяйственной деятельности человека нехарактерных для них видов живых организмов (растений, животных, вирусов, бактерий и др.), ухудшающих условия существования биоценозов или негативно влияющих на здоровье человека. Биологические загрязнения вызывают у человека различные заболевания. Это болезнетворные микроорганизмы, вирусы. Они могут находиться в атмосфере, воде, почве, в теле других живых организмов, в том числе и в самом человеке. Наиболее опасны возбудители инфекционных заболеваний. Они имеют различную устойчивость в окружающей среде. Одни способны жить вне организма человека всего несколько часов; находясь в воздухе, в воде, на разных предметах, они быстро погибают. Другие могут жить в окружающей среде от нескольких дней до нескольких лет. Для третьих окружающая среда является естественным местом обитания. Для четвертых - другие организмы, например дикие животные или человек, являются местом сохранения и размножения.

Основными источниками биологического загрязнения являются сточные воды практически всех видов промышленного производства, сельского хозяйства, коммунального хозяйства городов и поселков, бытовые и промышленные свалки, кладбища и др. Из этих источников разнообразные органические соединения и патогенные микроорганизмы попадают в почву и подземные воды, где постоянно обитают возбудители столбняка, ботулизма, газовой гангрены, некоторых грибковых заболеваний. В организм человека они могут попасть при повреждении кожных покровов, с немытыми продуктами питания, при нарушении правил гигиены.

Болезнетворные микроорганизмы могут проникнуть в грунтовые воды и стать причиной инфекционных болезней человека. Поэтому воду из артезианских скважин, колодцев, родников необходимо перед питьем кипятить.

Особенно загрязненными бывают открытые источники воды: реки, озера, пруды.

В жарких странах широко распространены такие болезни, как амебиаз, шистоматоз, эхинококкоз и другие, которые вызываются различными паразитами, попадающими в организм человека с водой. При воздушно-капельной инфекции Среди внешних признаков старости наиболее заметными являются снижение плавности движений, изменение осанки, снижение эластичности кожи, массы тела, упругости и эластичности мышц, появление на лице и других участках тела морщин, выпадение зубов. Заметно изменяется также вторая сигнальная система (изменяется речевая интонация, голос становится глухим).

Среди внутренних признаков в первую очередь следует назвать такие признаки, как обратное развитие (инволюция) органов. Отмечается уменьшение размеров печени и почек, уменьшается количество нефронов в почках (к 80-ти годам почти наполовину), что снижает функциональные возможности почек и отражается на водно-элекролитном обмене. Снижается эластичность кровеносных сосудов, уменьшается перфузия кровью тканей и органов, повышается периферическая сопротивляемость сосудов. В костях накапливаются неорганические соли, изменяются (обызвествляются) хрящи, снижается способность органов к регенерации. Происходят существенные изменения в клетках, замедляется деление и восстановление их функционального тонуса, уменьшается содержание воды, снижается активность клеточных ферментов, нарушается координированность между ассимиляцией и диссимиляцией. В головном мозге нарушается синтез белков, в результате чего образуются аномальные белки. Повышается вязкость клеточных мембран, нарушается синтез и утилизация половых гормонов, происходят изменения в структуре нейронов. Наступают структурные изменения белков соединительной ткани и изменения эластичности этой ткани. Ослабляются иммунологические реакции, увеличивается возможность аутоиммунных реакций. Снижаются функции эндокринных систем, в частности, половых желез.

3. Фундаментальные свойства живого: самовоспроизведение, саморегуляция и самообновление.

Для живого характерен ряд свойств, которые в совокупности «делают» живое живым. Самовоспроизведение. Это свойство является важнейшим среди всех остальных. Замечательной особенностью является то, что самовоспроизведение тех или иных организмов повторяется в неисчислимых количествах генераций, причем генетическая информация о самовоспроизведении закодирована в молекулах ДНК. Положение «все живое происходит только от живого» означает, что жизнь возникла лишь однажды и что с тех пор начало живому дает только живое. На молекулярном уровне самовоспроизведение происходит на основе матричного синтеза ДНК, которая программирует синтез белков, определяющих специфику организмов. На других уровнях оно характеризуется чрезвычайным разнообразием форм и механизмов, вплоть до образования специализированных половых клеток (мужских и женских). Важнейшее значение самовоспр-ния заключается в том, что оно поддерживает существование видов, определяет специфику биологической формы движения материи. Саморегуляция. Процессы, протекающие в клетках, подвержены регуляции. На молекулярном уровне регуляторные механизмы существуют в виде обратных химических реакций, основу которых составляют реакции с участием ферментов, обеспечивающие замкнутость процессов регуляции по схеме синтез — распад — ресинтез. Синтез белков, включая ферменты, регулируется с помощью механизмов репрессии, индукции и позитивного контроля. Напротив, регуляция активности самих ферментов происходит по принципу обратной связи, заключающейся в ингибировании конечным продуктом. Известно также регулирование путем хим. модификации ферментов. В регуляции активности клеток принимают участие гормоны, обеспечивающие химическую регуляцию. Любое повреждение молекул ДНК, вызванное физ. или хим. ф-рами воздействия, может быть восстановлено с помощью одного или нескольких ферментативных механизмов, что представляет собой саморегуляцию. Она обеспечивается за счет действия контролирующих генов и в свою очередь обеспечивает стабильность генетического материала и закодированной в нем генетической информации. Самообновление. В отличие от тел неживой природы обмен с окружающей средой для живых организмов является условием их существования. При этом происходит восстановление разрушенных ("отработавших") компонентов, замена их новыми, идентичными им, т.е. имеет место самообновление. Вот некоторые примеры: все белки печени и крови человека обновляются каждые 20 дней; все тканевые белки - в течение каждых 160 дней; все клетки кишечного эпителия обновляются в течение недели. Процессы обмена веществ, протекающие внутри организма, объединены в метаболические каскады и циклы химическими реакциями, которые строго упорядочены во времени и пространстве. Показательны расчеты для клеток человека - их метаболический аппарат включает более 10000 реакций. Согласованное протекание большого количества реакций в малом объеме достигается путем упорядоченного распределения отдельных звеньев обмена веществ в клетке. Процессы обмена веществ регулируются с помощью биокатализаторов - особых белков-ферментов. Каждый фермент обладает субстратной специфичностью катализировать превращение лишь одного субстрата. В основе этой специфичности лежит своеобразное "узнавание" субстрата ферментом. Ферментативный катализ отличается от небиологического чрезвычайно высокой эффективностью, в результате чего скорость соответствующей реакции повышается в 1010 - 1013 раз. Каждая молекула фермента способна осуществлять от нескольких тысяч до нескольких миллионов операций в минуту, не разрушаясь в процессе участия в реакциях. Еще одно характерное отличие ферментов от небиологических катализаторов состоит в том, что ферменты способны ускорять реакции при обычных условиях.

15. Вода. Физико-химические свойства и роль в живом. Вода составляет около 70% массы клетки. У отдельных организмов, например медуз, содержание превышает 95% . Для водных организмов характерна чрезвычайная приспособленность к воде, поскольку высокая теплоемкость воды представляет собой непрерывно действующий «тепловой» буфер, который обеспечивает в общем постоянную температуру тела независимо от температуры воздуха. В случае растений очень прочное сцепление молекул воды способствует переносу растворенных питательных веществ из корней в листья при транспирации. Наконец, на молекулярном уровне у наземных и водных животных, равно как и у растений, вода определяет ряд важных свойств макромолекул. В теле человека вода составляет 60%, из которой 40% приходится на внутриклеточную, а 20% — на экстраклеточную воду. Плазма крови содержит 5% экстраклеточной воды. Вода имеет исключительно важное значение для жизнедеятельности клеток, представляя собой среду, в которой осуществляются важнейшие реакции, лежащие в основе синтеза и распада веществ. Кроме того она является растворителем различных химических веществ. Вещества, хорошо растворимые в воде получили название гидрофильных, плохо растворимые называют гидрофобными. В воде хорошо растворяются хлористый натрий, сахара, простые спирты, альдегиды, кетоны. Под влиянием растворенных веществ вода может изменять свои свойства, в частности, могут изменяться температура замерзания, температура кипения, давление пара и осмотическое давление воды. Эта особенность воды имеет очень важное биологическое значение. Например, рыбы в пресной воде при температуре ее замерзания сохраняют свою активность, причем по той причине, что концентрация веществ, растворенных в крови рыб, является большей, чем в воде, и это исключает переохлаждение, а затем и замерзание их крови. Для воды характерно то, что она обладает некоторой способностью к обратимой ионизации, в ходе которой она распадается на ионы водорода (Н+) и ионы гидроксила (ОН-). Для изменения концентрации ионов Н+ в любом водном растворе используют так называемую шкалу рН, с помощью которой обозначают концентрацию водородных ионов (Н+) в водных растворах, кислотность которых находится между 1,0 МН+ и 1,0 МОН-. Так значение рН для нейтрального раствора составляет 7,0, тогда как растворы, имеющие рН выше 7,0, — это щелочные растворы, а меньше 7,0 — это кислые растворы. Величины рН характерны для всех внутриклеточных и внеклеточных жидкостей в организме, причем постоянство концентрации водородных ионов поддерживается буферными системами, которые у млекопитающих представлены фосфатной и бикарбонатной системами. Величины рН всех жидкостей организмов исключительно постоянны. Их изменения чрезвычайно неблагоприятны для организмов, поскольку даже небольшие сдвиги рН характеризуются значительным падением каталитической активности ферментов. В воде под влиянием ферментов происходят реакции гидролиза белков и других соединений. Вода принимает участие также в выведении из клеток продуктов обмена. Наконец, она поддерживает тепловой режим клетки.

18. Основные этапы эволюции беспозвоночных. История эволюции животных изучена наиболее полно в связи с тем, что многие из них обладают скелетом и поэтому лучше сохраняются в окаменелых остатках. Многоклеточные животные происходят от одноклеточных организмов через колониальные формы. Первыми животными были губки и кишечнополостные. Древние кишечнополостные дали начало плоским червям, которые являются трехслойными животными с двусторонней симметрией тела. От древних ресничных червей произошли первые вторично-полостные животные — кольчатые черви. Древние морские многощетинковые, вероятно, послужили основой для возникновения типов членистоногих, моллюсков и хордовых. В позднем кембрии возникают бесчелюстные панцирные рыбы, а в девоне — челюстные. Параллельно эволюции позвоночных шло развитие беспозвоночных животных. Переход от водной среды обитания к наземной осуществился у паукообразных и насекомых на основе совершенного твердого наружного скелета, членистых конечностей, органов выделения, нервной системы, органов чувств и поведенческих реакций, появления трахейного и легочного дыхания. Среди моллюсков выход на сушу наблюдался значительно реже и не приводил к такому разнообразию видов, какое было характерно для насекомых. Основные особенности эволюции животного мира следующие:

1. прогрессивное развитие многоклеточности и, как следствие, специализация тканей и всех систем органов;

2. свободный образ жизни, который определил выработку различных механизмов поведения, а также относительную независимость онтогенеза от колебаний факторов окружающей среды;

3. возникновение твердого скелета: наружного у некоторых беспозвоночных (членистоногие) и внутреннего у хордовых;

4. прогрессивное развитие нервной системы, которое стало основой для возникновения условно-рефлекторной деятельности.

41. Пищевые цепи. Представления Риклефса. Пищевая цепь — ряды видов растений, животных, грибов и микроорганизмов, которые связаны друг с другом отношениями: пища — потребитель. Организмы последующего звена поедают организмы предыдущего звена, и таким образом осуществляется цепной перенос энергии и вещества, лежащий в основе круговорота веществ в природе. При каждом переносе от звена к звену теряется большая часть (до 80—90 %) потенциальной энергии, рассеивающейся в виде тепла. По этой причине число звеньев (видов) в цепи питания ограничено и не превышает обычно 4—5. Существует 2 основных типа трофических цепей — пастбищные и детритные. В пастбищной трофической цепи (цепь выедания) основу составляют автотрофные организмы, затем идут потребляющие их растительноядные животные (например, зоопланктон, питающийся фитопланктоном), потом хищники (консументы) 1-го порядка (например, рыбы, потребляющие зоопланктон), хищники 2-го порядка (например, щука, питающаяся другими рыбами). Особенно длинны трофические цепи в океане, где многие виды (например, тунцы) занимают место консументов 4-го порядка. В детритных трофических цепях (цепи разложения), наиболее распространенных в лесах, большая часть продукции растений не потребляется непосредственно растительноядными животными, а отмирает, подвергаясь затем разложению сапротрофными организмами и минерализации. Таким образом, детритные трофические цепи начинаются от детрита (органических останков), идут к микроорганизмам, которые им питаются, а затем к детритофагам и к их потребителям — хищникам. Основную роль в пастбищных цепях этих экосистем играют млекопитающие, прежде всего различные копытные и хищные. Иное дело детритные цепи. Возникновение стабильных травяных сообществ было бы просто невозможно без появления целого комплекса насекомых-копрофагов, перерабатывающих огромную массу экскрементов травоядных .

36. Численность и плотность популяции. Одними из важнейших характеристик популяции являются ее численность и плотность.

1. Численность. Существует нижний предел численности, ниже которого популяция прекращает свое воспроизведение. Такая минимальная численность популяции называется критической. При определении критической численности нужно учитывать не всех особей, а только тех, которые принимают участие в размножении – это эффективная численность популяций. Обычно численность популяций измеряется сотнями и тысячами особей. В стабильных по численности популяциях число особей, оставляющих потомство, должно быть равно числу таких особей в предыдущих поколениях. Для управления численностью популяций необходимо знать их основные характеристики. Лишь в этом случае возможно прогнозирование изменения состояния популяции при воздействии на неё.

2. Плотность. Плотность популяции является производной характеристикой. Обычно плотность определяется как среднее число особей на единицу площади или объема занимаемого популяцией пространства. Плотность можно выражать также как массу (биомассу) членов популяции на единице площади или в единице объема. Сравнительно многочисленные популяции могут обладать низкой плотностью. Низкая плотность снижает внутривидовую конкуренцию и повышает шансы отдельных членов популяции на выживание.

Возможна и обратная ситуация: сравнительно малочисленная популяция может обладать высокой плотностью. В этом случае гарантируется образование брачных пар. При малочисленности, но высокой плотности популяция может оказывать значительное влияние на функционирование сообществ и экосистем. Каждая конкретная популяция должна обладать некоторой оптимальной плотностью. Распределение плотности популяции тесно связано с ее пространственной структурой.

32. Закон оптимума. Экологическая валентность вида.

Влияние переменного фактора на живые организмы в положительную или отрицательную сторону зависит прежде всего от степени его проявления. Недостаточное и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей. Любому живому организму необходимы не вообще температура, влажность, минеральные и органические вещества, а их определенный режим, т.е. существуют некоторые верхние и нижние границы амплитуды допустимых колебаний этих факторов. Чем шире пределы какого-либо фактора, тем выше устойчивость или толерантность данного организма.

Благоприятная сила воздействия называется зоной оптимума фактора среды или его оптимумом для организмов данного вида. Чем выше отклонение от оптимума, тем больше угнетает данный фактор жизнедеятельность организма (зона пессиума). Максимально и минимально переносимые значения фактора - критические точки, за пределами которых невозможно существование. Критические точки ограничивают степень выносливости, так называемую экологическую валентность живых существ по отношению к конкретному фактору среды. Свойство видов адаптироваться к тому или иному диапазону факторов среды обозначается понятием «экологическая пластичность» (экологическая валентность) вида. Чем шире диапазон колебаний экологического фактора, в пределах которого данный вид может существовать, тем больше его экологическая валентность. Каждый фактор неодинаково влияет на разные функции организма. Оптимум для одних процессов может являться пессиумом для других. Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т.п.), всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные организмы могут также менять места обитания для успешного осуществления своих жизненных функций.

33. Экологический спектр вида: стенобионты и эврибионты. К каждому из факторов среды виды приспосабливаются относительно независимым путем. При изменении какого-либо фактора отличается и поведение разных видов. Экологически выносливые виды называют эврибионтными, маловыносливые – стенобионтными. Эврибиотность и стенобионтность характеризуют различные типы приспособленности организмов к выживанию. Виды, длительное время развивающиеся в относительно стабильных условиях, утрачивают экологическую пластичность и вырабатывают черты стенобионтности, тогда как виды, существующие при значительных колебаниях факторов среды, приобретают повышенную экологическую пластичность и становятся эврибионтными. Отношение организмов к колебаниям того или иного определенного фактора выражается прибавлением приставки эври- или стено- к названию фактора. По отношению ко всем факторам среды эврибионтные организмы встречаются редко. Чаще всего эври- или стенобионтность проявляется по отношению к одному фактору. Эврибиотность, как правило, способствует широкому распространению видов. Стенобионтность обычно ограничивает ареал. В то же время, нередко благодаря высоко специализированности, стенобионтам принадлежат обширные территории. Экологические валентности вида по отношению к разным факторам могут быть разнообразными. Это создает чрезвычайное многообразие адаптаций в природе. Сумма экологических валентностей по отношению к отдельным факторам среды составляет экологический спектр вида. Экологические спектры отдельных видов не совпадают. Каждый вид специфичен по своим экологическим возможностям. Даже у близких по способам приспособления к среде видов существуют различия в отношении к каким-либо отдельным факторам. Факторы среды, наиболее удаляющиеся от оптимума, особенно затрудняют возможность существования вида в данных условиях. Если хотя бы один из экологических факторов приближается или выходит за пределы критических величин, то, несмотря на оптимальное сочетание остальных условий, виду грозит гибель. Такие сильно уклоняющиеся от оптимума факторы приобретают первостепенное значение в жизни вида или отдельных представителей в каждый конкретный отрезок времени. Экологический фактор будет играть роль лимитирующего фактора в том случае, когда последний отсутствует или находится ниже критического уровня или превосходит максимально выносимый уровень. Ограничивающим распространение фактором могут служить и биотические отношения, Чтобы определить, сможет ли вид существовать в данном географическом районе, нужно в первую очередь выяснить не выходят ли какие-либо факторы среды за пределы его экологической валентности, особенно в наиболее уязвимый период развития. Знание ограничивающих факторов, таким образом, ключ к управлению жизнедеятельностью организмов.

40. Трофическая структура биогеоценоза. Трофическая, или экологическая структура биоценоза определяется характером пищевых отношений. Поэтому в состав биоценозов входят различные группы организмов в определенном соотношении. В сходных почвенно-климатических условиях формируются биоценозы со сходной трофической структурой, например, сообщества североамериканских прерий и евроазиатских степей, сообщества дождевых лесов Южной Америки и Африки. Структура экосистемы: продуценты, консументы, редуценты, абиотическая среда. Биоценоз – основа функционирования экосистемы. Структура экосистемы. Поддержание жизнедеятельности организмов и круговорот веществ в экосистеме возможны только за счет постоянного притока высокоорганизованной энергии. Основным первичным источником энергии на Земле является солнечная энергия. В экосистемах наблюдается постоянный поток энергии, которая переходит из одной формы в другую. Фотосинтезирующие организмы переводят энергию солнечного света в энергию химических связей органических веществ. Эти организмы являются производителями, или продуцентами органического вещества. В большинстве случаев функции продуцентов в экосистемах выполняют растения. Гетеротрофные организмы получают энергию при поглощении органических веществ и называются потребителями, или консументами. Существуют консументы первого порядка (растительноядные организмы, или фитофаги), второго порядка (организмы, питающиеся фитофагами, или зоофаги) и высших порядков (хищники и сверх–хищники, паразиты и сверх–паразиты). В большинстве случаев функции консументов в экосистемах выполняют животные. Организмы, которые специализируются на добывании строго определенной пищи, называются монофаги. Организмы, которые могут питаться различной пищей, называются полифаги. Для полифагов характерен широкий спектр питания, включающий основную, второстепенную и случайную пищу. Погибшие организмы и отходы жизнедеятельности в любой форме потребляются организмами, разрушающими мертвое органическое вещество до неорганических веществ – редуцентами, или деструкторами. К редуцентам относятся различные животные (как правило, беспозвоночные), грибы, прокариоты. Продуценты и редуценты обеспечивают круговорот веществ в экосистеме: окисленные формы углерода и минеральных веществ превращаются в восстановленные и наоборот; происходит превращение неорганических веществ в органические, а органических – в неорганические.

Круговорот веществ и поток энергии в экосистеме как условие существования устойчивых экосистем. При последовательной передаче энергии от одних организмов к другим образуются пищевые (трофические) цепи. Трофические цепи, которые начинаются с продуцентов, называются пастбищные цепи, или цепи выедания. Отдельные звенья пищевых цепей называются трофические уровни. В пастбищных цепях выделяют следующие уровни:

1-й уровень – продуценты (растения);

2-й уровень – консументы первого порядка (фитофаги);

3-й уровень – консументы второго порядка (зоофаги);

4-й уровень – консументы третьего порядка (хищники);

5-й уровень – консументы высших порядков (сверх–хищники, паразиты и сверх–паразиты).

Погибшие организмы и отходы жизнедеятельности каждого уровня разрушаются редуцентами. Трофические цепи, которые начинаются с редуцентов, называются детритные цепи. Детритные цепи являются основой существования зависимых экосистем, в которых органического вещества, произведенного продуцентами, недостаточно для обеспечения энергией консументов (например, глубоководные экосистемы, экосистемы пещер, экосистемы почвы). В этом случае существование экосистемы возможно за счет энергии, содержащейся в мертвом органическом веществе.

Органическое вещество, находящееся на каждом трофическом уровне, может потребляться различными организмами и различными способами. Один и тот же организм может относиться к разным трофическим уровням. Таким образом, в реальных экосистемах пищевые цепи превращаются в пищевые сети.

Человечество возникло в тропической зоне Африки, и следует полагать, что поэтому наиболее древним и исходным для остальных экологических типов человека является тропический тип. Об этом свидетельствует и наибольший полиморфизм морфофункциональных признаков человека в рамках этого типа на территории Центральной и Северо-Восточной Африки. В связи с этим уместно обратиться к учению Н.И. Вавилова о центрах происхождения и многообразия культурных растений, в соответствии с которым именно в зонах первоначального вовлечения биологических видов в социальную среду наблюдается наиболее выраженный наследственный полиморфизм местных популяций по большому количеству признаков.

Это указывает на то, что тропический адаптивный тип развивается в результате асинхронного параллелизма в эволюции человека, причем вначале на африканском континенте, а потом и в других областях. Отсюда следует и еще один вывод: адаптивный тип формируется на фоне расогенеза и вне зависимости от него. В процессе адаптогенеза в популяциях человека можно проследить и проявление закона гомологических рядов. Это выражается, например, в том, что в бассейне Меконга в Индокитае и на острове Суматра имеются пигмеоидные популяции, по антропометрическим признакам соответствующие африканским пигмеям.

Экологический тип умеренного пояса сформировался на базе исходного генетического и фенотипического полиморфизма тропического типа при расселении популяций человека в умеренных зонах Евразии и позже — Северной Америки. Он оформился в рамках двух больших рас: европеоидной и монголоидной.

При заселении человеком арктической зоны в Евразии и Северной Америке произошло формирование арктического типа. Независимо от него среди индейцев Южной Патагонии и Огненной Земли в приантарктической зоне Южной Америки возникли популяции индейцев, по основному комплексу признаков соответствующие арктическому типу. Это еще один убедительный пример параллелизма эволюции человеческих популяций и реализации закона гомологических рядов, а также доказательство вторичности адаптивных типов по отношению к большим расам человечества. Формирование горного адаптивного типа иллюстрирует общие закономерности адаптогенеза, отмеченные выше. Этот тип также развился независимо от расовой и этнической принадлежности популяций — среди европеоидов Альп, Кавказа, Памира и Гималаев, а также в монголоидных популяциях Тибета, Тянь-Шаня и Анд. В связи с тем что высокогорья заселялись человеком в последнюю очередь, горный экологический тип является по происхождению самым молодым. Интересно, что, несмотря на особенно выраженную расовую и этническую разнородность этого типа, комплекс основных признаков его является монолитным. Однако в отличие от других типов, вероятно, именно горный проявляется в основном только на фенотипическом уровне и не имеет наследственной природы. Об этом свидетельствует то, что количество эритроцитов в крови и объем грудной клетки людей, переселяющихся в условия высокогорья и обратно, могут меняться на протяжении жизни одного поколения. В настоящее время пока еще на фенотипическом уровне идет формирование адаптивного типа человека городской среды, который характеризуется широкой лабильностью психических реакций, обеспечивающих способность переживать состояния постоянного стресса, и рядом морфофизиологических особенностей, оптимальных для жизни в специфических условиях города. Формирование экологических типов человека в значительной степени обеспечило всесветное расселение людей. Меняющаяся среда обитания под действием антропогенных факторов ставит перед популяциями человека новые задачи, решаемые и сегодня за счет не только социальных, но и биологических адаптации.

28. Химическое загрязнение среды и его последствия. На всех стадиях своего развития человек был тесно связан с окружающей его средой. Но с появлением высокоиндустриального общества влияние человека на природу стало масштабнее и губительнее. И сейчас это привело к глобальной опасности для человечества. Наиболее значительным является химическое загрязнение среды несвойственными ей веществами химической природы.

Основными загрязняющими веществами атмосферы являются:

Оксид углерода. Это соединение, активно реагирующет с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффекта.

Сернистый ангидрид. Серный ангидрид (ежегодно выбрасываются десятки миллионов тонн серного ангидрида). Источниками являются пирометаллургические предприятия цветной и чёрной металлургии, а также ТЭС Он подкисляет почву, обостряет заболевания дыхательных путей человека. Сероводород и сероуглерод. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, нефтеперерабатывающие и нефтепромыслы.

Оксиды азота. Основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения. Последствия загрязнения Мирового океана:

суспензии осаждаются и заливают дно, задерживая развитие или полностью прекращая жизнедеятельность микроорганизмов, которые участвуют в процессе самоочищения вод.

при гниении этих осадков могут образовываться соединения и отравляющие вещества, которые приводят к загрязнению всей воды

затруднение проникновения света в глубь воды и замедление процессов фотосинтеза

образование на воде пленки, препятствующей газообменом между водой и атмосферой, уменьшение содержания кислорода в воде, необходимого для жизнедеятельности организмов, живущих в воде

образование среды для патогенных организмов

возникновение возбудителей таких болезней, как брюшной тиф, дизентерия, холера.

Загрязнение почвы. Основные виды загрязнений: Загрязнение почв кислотообразующими соединениями; тяжелыми металлами; пестицидами; нефтью и нефтепродуктами. Применение удобрений и загрязнение ими почв.

Последствия

попадание в почву болезнетворных бактерий, возбудителей таких заболеваний, как тифа, дизентерии, туберкулеза, полиомиелита, газовой гангрены, сибирской язвы, ботулизма и некоторые другие микробы

попадание в почву веществ, способных оказывать токсическое воздействие на живые организмы и их сообщества

загрязнение почв и нарушение нормального круговорота веществ

накопление в почве свинца и его отрицательное воздействие на здоровье человека.

заражение происходит через дыхательные пути при вдыхании воздуха, содержащего болезнетворные микроорганизмы. Возбудители этих болезней попадаю в воздух при кашле, чихании и даже при разговоре больных людей. Особую группу составляют инфекционные болезни, передающиеся при тесном контакте с больным или при пользовании его вещами, например, полотенцем, носовым платком, предметами личной гигиены и другими, бывшими в употреблении больного. Биологическое загрязнение среды постоянно усиливаются, возникают все новые микроорганизмы, с которыми человечество еще не знает как бороться. Дело в том, что под воздействием радиации и химического загрязнения среды микроорганизмы постоянно мутируют, приобретают новые, неизвестные человеку обличья. Могут вызывать самые разные заразные заболевания. Уже давно известно, что многие микроорганизмы приспосабливаются к действию лекарственных препаратов, образуются такие их формы, которым уже не страшен, например, пенициллин. А ведь когда-то это антибиотик считался универсальным против простудных заболеваний. Ученые не успевают, можно сказать, разрабатывать новые виды лекарств против бактериальных загрязнителей среды. Настоящим преступлением против человечества была разработка биологического оружия. Сейчас введен мораторий на биологическое оружие. Но это сейчас, после того, как целые народы пострадали от его воздействия и последствия применения биологического оружия проявляются до сих пор.

В последние годы возникла новая экологическая опасность — потенциальная возможность попадания из лабораторий или заводов в окружающую природную среду микроорганизмов и биологически активных веществ, оказывающих негативное воздействие на живые организмы и их сообщества, здоровье человека и его генофонд, что связано с бурным развитием биотехнологии и генной инженерии.

14. Понятие о кофакторах и коферментах. Сложные органические вещества небелковой природы, от которых зависит активность фермента, называют коферментами (кофакторами). Ряд наиболее важных коферментов: НАД, НАДФ, ФАД. Коферменты входят в состав активных центров некоторых ферментов, очень непрочно связаны с ферментом и служат акцепторами водорода в реакциях дегидрогенирования.

Коферменты, подобно ферментам, не расходуются в процессе реакции и потому могут функционировать многократно. Таким образом, коферменты постоянно окисляются и вновь восстанавливаются. Что же касается кислорода, то хотя он непосредственно и не требуется для той или иной конкретной реакции, он все же, в конечном счете, часто бывает необходим, чтобы окислить молекулы кофермента и сделать их вновь пригодными для выполнения их функций - присоединения атомов водорода (электронов).

Если кофактор прочно связан с ферментом и остается в этом связанном состоянии постоянно, то его называют простетической группой. Роль простетических групп играют органические молекулы. Они помогают ферменту осуществлять его каталитическую функцию, как это видно на примере флавинадениндинуклеотида (ФАД). ФАД содержит рибофлавин (витамин В2), который является водород-акцепторной частью его молекулы. Функция ФАД связана с окислительными путями клетки, в частности с процессом дыхания, в котором ФАД играет роль одного из переносчиков в дыхательной цепи.

Коферменты, как и простетические группы, — это органические молекулы, выполняющие функцию кофакторов, но в отличие от простетических групп они сохраняют связь с ферментом только в ходе реакции. Все коферменты представляют собой производные витаминов. Никотинамидадениндинуклеотид (НАД). НАД — производное витамина ниацина («никотиновой кислоты») — может существовать как в окисленной, так и в восстановленной форме. В окисленной форме НАД при катализе играет роль акцептора водорода.

Переносчиком электронов служит никотинамидадениндинуклеотидфосфат НАДФ. Его окисленную форму обозначают НАДФ+, а восстановленную (образующуюся после присоединения двух электронов и иона Н. В НАДФ водорода) – НАДФ+. НАДФ принадлежит к т.н. коферментам. Большая часть преобразованной световой энергии, запасаемой в световой стадии фотосинтеза, запасается при переносе электронов от воды к НАДФ+Н удерживает электроны не столь прочно, как кислород воды, и может отдавать их в процессах синтеза органических соединений, расходуя накопленную энергию на полезную химическую работу.

4. Фотосинтез и особенности организации растительной клетки.

Фотосинтез — это синтез органических соединений в листьях зеленых растений из воды и углекислого газа атмосферы с использованием солнечной (световой) энергии, адсорбируемой хлорофиллом в хлоропластах. Благодаря фотосинтезу происходит улавливание энергии видимого света и превращение ее в химическую энергию, сохраняемую (запасаемую) в органических веществах, образуемых при фотосинтезе. Значение фотосинтеза гигантское.

Химию фотосинтеза описывают следующими уравнениями:

Фотосинтез начинается с улавливания и поглощения света пигментом хлорофиллом, содержащимся в хлоропластах клеток зеленых растений. Когда свет падает на молекулу хлорофилла, то один из ее электронов оказывается в возбужденном состоянии. Возбужденные электроны передаются затем другими молекулами, в результате чего повышается свободная энергия молекулы-акцептора, а «брешь», образованная в молекуле хлорофилла, заполняется электроном, поступающим из воды. Последняя при этом окисляется, в результате чего выделяется молекулярный кислород. Таким образом, в молекулах хлорофилла световая энергия переводит электроны на более высокий энергетический уровень В переходе участвуют две содержащиеся в хлоропластах фотосистемы, образованные хлорофиллом и особыми белками — фотосистема I, активируемая далеким красным светом (-700 нм) и фотосистема II, активируемая красным светом с более высокой энергией (-650 нм), т. е. этот переход происходит в два этапа при использовании света. Реакции, протекающие на этих этапах, получили название световых. Обе фотосистемы связаны между собой системой переноса электронов. На уровне фотосистемы I молекулы хлорофилла передают свои электроны, богатые энергией, через ферредоксин к никотин-амид-аденин-динуклеотидфосфату (НАДФ), который в результате этого восстанавливается в НАДФЧН ив восстановленной форме уже сам способен самостоятельно поставлять электроны, необходимые для образования глюкозы путем восстановления атмосферной СО2. После перехода электронов в НАДФЧН из молекулы хлорофилла в последних остаются своеобразные «бреши». На уровне фотосистемы II богатые энергией возбужденные электроны хлорофилла передаются системе переноса электронов, а образовавшиеся в молекулах хлорофилла «бреши» после «ушедших» электронов замещаются бедными энергией электронами, которые поступают от воды, окисляющейся с образованием молекулярного кислорода. Пройдя через ряд соединений, составляющих цепь переноса электронов, электроны из фотосистемы II, богатые энергией, в конечном итоге замещают утраченные электроны в хлорофилле из фотосистемы I. В цепи переноса электронов осуществляется несколько окислительно-восстановительных реакций, в каждой из которых электроны переходят на более низкий энергетический уровень. Часть энергии, теряемой при переходе через цепь переноса электронов, идет на обеспечение синтеза АТФ из АДФ и неорганического фосфата. В результате световых реакций фотосинтеза образуются высокоэнергетические АТФ и восстановленный НАДФ, которые снабжают энергией последующие, так называемые темновые реакции, протекающие без света и приводящие, в конце концов, к восстановлению атмосфертной CO2 до Сахаров. Источником энергии здесь является АТФ, а восстанавливающим агентом — НАДФ-Н, синтезируемые в реакциях фотосинтетического переноса электронов. Процесс восстановления CO2 начинается с катализируемой ри-булозобисфосфаткарбоксилазой фиксации молекул этого соединения молекулами акцептора и сопровождается вступлением атомов углерода в ряд последовательных реакций, что приводит к образованию на каждые шесть фиксированных молекул CO2 одной молекулы глюкозы, причем связывание одной молекулы CO2 обеспечивается затратой трех молекул АТФ и двух молекул НАДФ-Н. Как отмечено выше, энергия и электроны, необходимые для темновых реакций, поставляются АТФ и восстановленным НАДФ, образованными в световых реакциях. Таким образом, химическая энергия, генерированная световыми реакциями, стабилизируется в молекулах глюкозы в процессе темновых реакций. В конечном итоге из глюкозы образуется крахмал, который является ее высокомолекулярным полимером, в котором оказываются запасенными по существу как атомы углерода, так и энергия. Полимеризуясь, глюкоза образует также целлюлозу. Подсчитано, что в листьях зеленых растений Земли и в фитопланктоне водоемов ежегодно синтезируется около 150 млрд тонн органических веществ и выделяется в атмосферу около 200 млрд тонн кислорода.

Растительная клетка отличается от животной.

Пластиды – это органеллы, свойственные одним только растительным клеткам; у высших растений они образуются из пропластид - мелких телец, обнаруживаемых в меристематических зонах растения. Пластиды окружены двойной мембраной (оболочкой). Из пропластид – в зависимости от их местонахождения в растении - могут образоваться разные типы пластид. Хлоропласт (фотосинтетические мембраны, содержащие хлорофилл). Крупная содержащая хлорофилл пластида, в которой протекает фотосинтез. Хлоропласт окружен оболочкой из двойной мембраны и заполнен студенистой стромой. В строме находится система мембран, собранных в стопки, или граны. В ней же может отлагаться крахмал. Кроме того, строма содержит рибосомы, кольцевую молекулу ДНК и капельки масла. В этой органелле происходит фотосинтез, т.е. синтез сахаров и других веществ из СО2 и воды за счет световой энергии, улавливаемой хлорофиллом. Световая энергия превращается в химическую. Вакуоль представляет собой наполненный жидкостью мембранный мешок, стенка которого состоит из одинарной мембраны. Крупная центральная вакуоль (более мелкие вакуоли встречаются как в растительных, так и в животных клетках; таковы, например, пищеварительные и сократительные вакуоли). Мешок, образованный одинарной мембраной, которая называется тонопластом. В вакуоли содержится клеточный сок — концентрированный раствор различных веществ, таких, как минеральные соли, сахара, пигменты, органические кислоты и ферменты. В зрелых клетках вакуоли обычно бывают большими. Здесь хранятся различные вещества, в том числе и конечные продукты обмена. От содержимого вакуоли в сильной степени зависят осмотические свойства клетки. Иногда вакуоль выполняет функции лизосом. Клеточная стенка. Обеспечивает механическую опору и защиту. Благодаря ей возникает тургорное давление, способствующее усилению опорной функции. Предотвращает осмотический разрыв клетки. По клеточной стенке происходит передвижение воды и минеральных солей. Различные модификации, например пропитывание лигнином, обеспечивают выполнение специализированных функций. Срединная пластинка. Скрепляет друг с другом соседние клетки. Плазмодесмы – это живые связи, соединяющие соседние клетки растения через очень мелкие поры в смежных клеточных стенках. Иногда плазмодесмы располагаются группами; такие участки клеточной стенки носят название «первичные поровые поля». Поры в ситовидных пластинках ситовидных трубок флоэмы ведут свое начало от плазмодесм. Объединяют протопласты соседних клеток в единую непрерывную систему — симпласт,— по которой происходит транспорт веществ между этими клетками.

19. Систематическое положение Homo Sapiens. Проблема филогенеза человека неотделима от проблемы его систематического положения. Человек как биологический вид получил научное описание, обрел видовое название Homo sapiens и систематическое положение благодаря Карлу Линнею. Во втором издании работы «Система Природы» (1758) Линней так описал систематическое положение человека в царстве Животных:

класс Млекопитающие, порядок Приматы, род Люди, вид Человек разумный.

Однако сомнения в правильности классификации, как видно, не покидали К.Линнея, сына священника, глубоко верующего человека. И он нашел поистине соломоново решение: выделил вид Homo sapiens в особое царство природы - Царство человека, тем самым отвергнув мысль о существовании родственных связей между людьми с приматами. Их несомненное морфологическое сходство - не есть показатель родства, оно объясняется существованием общего плана, по которому Создатель творил эти виды. Так считал Линней. Однако предложенное Линнеем решение - вывести вид Homo sapiens в отдельное царство природы, не закрепилось в систематике. Человек по-прежнему «прописан» среди животных. Вот его современное систематическое положение:

Тип: Хордовые, Подтип: Позвоночные

Класс: Млекопитающие (теплокровные, с шерстью, живородящие)

Отряд: Приматы (полуобезьяны, обезьяны, человек), Подотряд: Узконосые обезьяны (обезьяны Старого Света и человек)

Надсемейство: Гоминоиды (человекообразные обезьяны и человек), Семейство: Гоминиды (человек и ископаемые виды – архантропы и палеоантропы), Род: Люди (все прямоходящие)

Вид: Homo sapiens Человек разумный (неоантроп), Подвид: Н.sapiens sapiens Современный (в анатомическом смысле) человек.

Можно видеть, что человек и многочисленные виды, известные по ископаемым находкам, объединены в семейство Гоминиды. Более узкая таксономическая категория, объединяющая филогенетически близкородственные виды, а именно – род, все равно является конгломератом разнообразных видовых форм. Сюда входят: человек умелый, человек прямоходящий, китайский человек - синантроп, яванский человек, неандертальский человек и многие другие - вплоть до человека разумного.

20. Основные этапы антропогенеза.

Формирование человека как биологического вида проходило через четыре основных этапа эволюции в пределах семьи гоминид: предшественник человека (протоантроп); самый давний человек (архантроп); древний человек (палеоантроп); человек современного типа (неоантроп). На сегодняшний день еще нет палеонтологических данных для воссоздания всех промежуточных этапов в развитии гоминид, что привели к человеку современного типа. Безусловно, что в целом эволюция гоминид являла собой дерево с большим количеством ветвей, из которых лишь одна достигла уровня человека. Вся кайнозойская эра характеризуется постепенным развитием приматов. Потомки первых форм приматов третичного периода в настоящий момент объединяются в подотряд низших приматов, или полуобезьян. Около 30 млн. лет назад от полуобезьян отделилась ветвь, которая дала начало древним человекообразным. Это были небольшие животные, какие жилы на деревьях и питались растениями и насекомыми. От них происходят все современные человекообразные. Начальным этапом процесса выделения человека из животного мира, согласно своему труду „Роль труда в процессе превращения обезьяны в человека" (1876) Энгельс считает усвоение какой-то необычайно развитой породой человекообразных обезьян прямой походки (прямохождения). „Этим был сделан решающий шаг для перехода от обезьяны к человеку". При прямой походке рука освободилась для совершения трудовых операций. Однако только у человека рука стала вполне свободной и могла совершенствоваться в ловкости, гибкости и мастерстве. С данного момента и началась ее бурная эволюция по пути все большего приспособления к трудовым операциям. Приобретенные человеком навыки и свойства передавались по наследству и закреплялись в последующих поколениях. Труд расширял кругозор людей, сплачивал их в более тесные коллективы, общение в которых привело к появлению и развитию речи. Это вполне понятно: у формировавшихся людей в трудовом процессе постоянно появлялась „потребность что-то сказать друг другу. Потребность создала себе свой орган: неразвитая гортань обезьяны медленно, но неуклонно преобразовывалась путем модуляции для все более развитой модуляции, а органы рта постепенно научались произносить один членораздельный звук за другим". Под влиянием труда и языка постепенно совершенствовался мозг человека. Он, в свою очередь, тоже оказывал соответствующее влияние на язык и труд. Вместе с человеком рождалось человеческое общество, резко отличавшееся от стада обезьян, в первую очередь трудом и общением. Трудовая деятельность человека как охотника и рыболова привела его к постоянному потреблению мяса - более питательного продукта, чем растительная пища. Это способствовало необычайному сокращению процесса пищеварения, что позволило увеличить расход энергии на другие жизненные функции. Кроме того, мозг получил гораздо больше необходимых для своего развития веществ. Огромное значение в процессе эволюции человека имели использование огня и приручение животных. Необычайно важным следствием трудовой деятельности явилось расширение области расселения человека: он приспособился жить в разных, нередко очень трудных, природных и климатических условиях, а с течением времени научился даже изменять природу в своих интересах.

35. Популяция – форма существования вида в природе. Элементарной внутривидовой группировкой, которой соответствует собственная реализованная экологическая ниша, является популяция. В состав популяции могут входить разные экотипы, изореагенты и биотипы в различных соотношениях. Наиболее полным и всеобъемлющим определением популяции является следующее: Популяция – это минимальная самовоспроизводящаяся группировка особей одного вида, населяющая определенный ареал в течение длительного ряда поколений, образующая собственную генетическую систему, формирующая собственную экологическую нишу и более или менее изолированная от других подобных группировок данного вида. Популяция есть форма существования вида и элементарная единица эволюции. Практическое значение популяционной биологии связано с тем, что популяция есть единица эксплуатации, охраны и подавления. Популяции обладают рядом свойств, которые не присущи отдельно взятой особи или просто группе особей. К основным характеристикам популяции относятся: численность, плотность, рождаемость, смертность, относительный и абсолютный прирост.

37. Половая структура популяции. В понятие биологической структуры популяции включается ее половая, возрастная (онтогенетическая) и этологическая структура.

Половая структура популяции определяется соотношением полов, которая изменяется с возрастом: – первичное соотношение полов – при образовании зигот; – вторичное соотношение полов – у новорожденных (независимо от способа рождения); – третичное соотношение полов – к моменту наступления половой зрелости. Таким образом, половая структура популяции оказывается тесно связанной с ее возрастной структурой.

Возрастная структура популяции зависит от способа размножения, от особенностей жизненного цикла и типа онтогенеза. Иногда принадлежность к возрастной группе определяется астрономическим возрастом особи. Чаще выделяют следующие возрастные группы:

1. Новорожденные особи, или особи нулевого возраста (отложенные яйца, вылупившиеся личинки, споры или семена растений, проростки растений).

2. Особи на раннем прегенеративном (ювенильном) этапе онтогенеза; они значительно отличаются от взрослых особей.

3. Особи на позднем прегенеративном этапе онтогенеза; они сходны с взрослыми особями, но еще не могут размножаться.

4. Особи на генеративном этапе онтогенеза, которые активно размножаются.

5. Особи на постгенеративном этапе онтогенеза, которые уже не могут размножаться.

26. Понятие об экологических факторах. Любой организм в среде своего обитания подвергается одновременному воздействию самых разнообразных условий окружающей среды или факторов. Экологический фактор - это любое условие среды, способное оказывать прямое или косвенное влияние на живые организмы, хотя бы на протяжении одной из фаз их индивидуального развития. Классификация экологических факторов: 1. Абиотические факторы (неживой природы)- а) климатические: свет, температура, движение воздуха, давление; б) почвенные: механический состав, влагоемкость, воздухопроницаемость, плотность; в) орографические: рельеф, высота над уровнем моря; г) химические: газовый состав воздуха, солевой состав воды, концентрация, кислотность и состав почвенных растворов.

2. Биотические факторы (живой природы)-

а) фитогенные (растения); б) зоогенные (животные); в) микробиогенные (вирусы, бактерии, простейшие);

3. Антропогенные (деятельность человека).

Изменения факторов среды во времени могут быть:

- регулярно-периодическими;

- нерегулярными, без четкой периодичности;

- направленными на протяжении известных, иногда длительных отрезков времени.

Воздействие экологических факторов на живые организмы проявляется в различных формах:

1) Устранение некоторых видов с территорий (климатические и физико-химические особенности которых им не подходят) и, следовательно, изменение их географического распространения.

2) Изменение плодовитости и смертности разных видов путем воздействия на развитие каждого из них, т.е. влияние на плотность популяции.

3) Появление адаптивных модификаций: количественных изменений обмена веществ и таких качественных изменений, как спячка, фотопериодические реакции и т.д.

Несмотря на большое разнообразие экологических факторов можно выявить ряд общих закономерностей в характере их воздействия на организмы. Все факторы среды взаимосвязаны, и среди них нет абсолютно безразличных для любого организма. Популяция и вид в целом реагируют на эти факторы, воспринимая их по-разному. Такая избирательность обуславливает и избирательное отношение организмов к заселению той или иной территории.

34. Живые организмы как среда обитания. Любой организм (даже самый мелкий) представляет собой сложную систему, которая обеспечивает разнообразные условия обитания для других организмов. Если организмы одного вида используют организм другого вида как среду обитания, то между ними возникают разнообразные биотические взаимодействия. Совместное существование двух и более разноименных видов называется симбиоз (в широком смысле этого слова). В простейшем случае формируется двухкомпонентная система из двух организмов разных видов. В зависимости от типа взаимоотношений между симбионтами возможны частные типы симбиотических взаимодействий: комменсализм, паразитизм, мутуализм. Организм как среда обитания имеет ряд преимуществ перед другими средами обитания: большое количество доступных пищевых ресурсов для гетеротрофных организмов, защищенность обитателей организмов, стабильность водного режима, температурного режима, водно-солевого режима (сходство с водной средой обитания). Положительные стороны организма как среды обитания приводят к дегенерации тела эндосимбионтов (яркий пример – постепенная редукция систем органов у сосальщиков и ленточных червей); как правило, наблюдается гигантизм – эндосимбионтные формы значительно крупнее, чем родственные им свободноживущие формы. В то же время организм как среда обитания имеет и отрицательные стороны: ограниченность жизненного пространства, недостаток кислорода, трудности с распространением от одной особи хозяев к другой, защитные реакции организма хозяина, недостаток света для фотоавтотрофных организмов.

Отрицательные стороны организма как среды обитания приводят к появлению соответствующих черт специализации у эндосимбионтов:

– ограниченность жизненного пространства приводит к возрастанию конкуренции между эндопаразитами (например, цепни–солитеры существуют в кишечнике хозяина в единственном экземпляре); – недостаток кислорода приводит к переходу на анаэробное дыхание и даже к утрате дыхательных ферментов (пример – взрослые аскариды); – трудности с распространением от одной особи хозяев к другой приводят к гипертрофированию половых систем и повышению плодовитости, к гермафродитизму (или постоянному контакту разнополых особей), к появлению различных способов бесполого размножения, к формированию жизненных циклов со сменой хозяев; – защитные реакции организма хозяина приводят к формированию различных прикрепительных органов, мощных защитных покровов и даже к изменению антигенной структуры эндосимбионтов (особенно у вирусов); – недостаток света для фотоавтотрофных организмов приводит к тому, что фотоавтотрофные эндосимбионты могут населять только поверхностные слои тела хозяина. Сходство организма как среды обитания с водной средой обитания позволяет многим видам совершить переход из водной среды обитания в организм как среду обитания без существенных морфологических и физиологических изменений.

45. Биомасса различных трофических уровней наземных и водных экосистем.

В результате последовательности превращений энергии в пищевых цепях каждое сообщество живых организмов в экосистеме приобретает определенную трофическую структуру. Трофическая структура сообщества отражает соотношение между продуцентами, консументами (отдельно первого, второго и т.д. порядков) и редуцентами, выраженное или количеством особей живых организмов, или их биомассой, или заключенной в них энергией, рассчитанных на единицу площади в единицу времени. Графически трофическую структуру сообщества представляют в виде пирамиды. Основанием пирамиды служит первый трофический уровень - уровень продуцентов, а последующие уровни образуют следующие этажи пирамиды. При этом высота всех блоков-этажей - одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне. Из количественных оценок, связанных с энергией, для трофических цепей известно правило десяти процентов (закон Линдемана): с одного трофического уровня на другой в среднем переходит не более 10 % энергии. Пирамида энергий является наилучшим графическим изображением трофической структуры экосистемы, поскольку она отражает динамику системы, то есть скорость прохождения энергии через пищевую цепь. Имея теперь представление о трофической структуре экосистем, выясним, чем определяется реальная продуктивность экосистемы, поскольку именно этот "конечный результат" представляет для нас интерес.

В любой экосистеме происходит образование биомассы и ее разрушение, причем эти процессы всецело определяются жизнью низшего трофического уровня - продуцентами. Все остальные организмы только потребляют уже созданное растениями органическое вещество и, следовательно, общая продуктивность экосистемы от них не зависит.

В зеленых тканях растений осуществляется два параллельных, но противоположных процесса - фотосинтез и дыхание. При фотосинтезе вещество создается, энергия накапливается, а при дыхании, как и при отмирании, часть накопленных веществ и энергии расходуется. Поэтому дыхание и отмирание рассматривается как некоторая мера энергии, выносимой из сообщества, в то время как увеличение биомассы есть продуктивность.

В водных экосистемах слой воды сильнее препятствует проникновению солнечных лучей, чем атмосферный воздух. Естественно, водные организмы приспособились к тому, чтобы использовать то количество света, которое реально поступает на ту или иную глубину для накопления органического вещества. Однако по мере увеличения глубины процессы фотосинтеза ослабляются и постепенно уравниваются с процессами дыхания.

50. Экологическая пластичность вида человек разумный.

Организм человека обладает высокой степенью приспособленности к условиям

внешней среды и их изменениям, то есть высокой экологической пластичностью, или

экологической валентностью. Количественно она выражается диапазоном изменений среды,

в пределах которого представители вида Homo sapiens сохраняют нормальную

жизнедеятельность. Поскольку организм человека обладает широкой экологической валентностью по отношению к комплексу факторов, то вид Человек разумный можно считать эврибионтным. Эврибионтность делает возможным заселение разнообразных мест обитания. Этого состояния невозможно было бы достичь без наличия специализированных механизмов адаптации. Поэтому имеет смысл говорить об отрегулированных динамических процессах приспособления. Оперативные физиологические адаптации организма направлены на сохранение постоянства его внутренней среды и осуществляются поэтапно: сначала происходит нарушение функции, затем поиск устойчивого состояния и, наконец, приспособление. Пределы такой адаптации зависят от многих факторов: наследственности, типа высшей нервной деятельности, образа жизни, состояния здоровья и т. д. Именно состояние здоровья позволяет организму произвольно расширять пределы адаптации. Следует отметить, что понятие "экологическая ниша" для вида Человек разумный должно включать и такой компонент как социальная адаптированность, или социальная ниша. Психическая подсистема генетически связана с биологическими качествами человека, так как само ее возникновение, судя по всему,

базируется на функционировании нервной системы, достигшей определенного уровня

развития и создавшей предпосылки для работы высших психических функций.

Возникновение социальной организации и формирование социальных качеств человека

также невозможно без определенного уровня развития морфофизиологических

характеристик и психической деятельности.

Раса – исторически сложившаяся группа человечества, объединённая общностью происхождения и общностью наследственных физических признаков (цветом кожи, волос, формой головы). Общеизвестны три главных расы: европеоидная, монголоидная, негроидная.

Европеоиды – люди, как правило, с прямыми или волнистыми, часто светлыми волосами, со светлой кожей. Борода и усы у них обычно сильно растут, лицо узкое, с выступающим носом (т.е. профилированное), ширина носа невелика, ноздри параллельны друг другу. Глаза расположены горизонтально, складка верхнего века отсутствует или развита слабо, челюстная часть лица не выступает вперёд (ортогнатный череп), губы обычно тонкие. Сейчас европеоиды обитают на всех материках, но сформировались они в Европе и Передней Азии. Монголоиды имеют чаще всего жёсткие, прямые и тёмные волосы. Кожа у них темнее, с желтоватым оттенком, борода и усы растут слабее, чем у европеоидов. Лицо широкое, уплощённое, скулы сильно выступают, нос, наоборот, уплощён, ноздри расположены под углом друг к другу. Очень характерны глаза: они часто узкие, внешний угол глаз чуть выше внутреннего (раскосость). Верхнее веко у типичных закрыто кожной складкой, порой до самых ресниц, имеется эпикантус (складка во внутреннем крае глаза, прикрывающая слёзный бугорок). Губы средние по толщине. Эта раса преобладает в Азии. Негроиды – люди с курчавыми чёрными волосами, с очень тёмной кожей и карими глазами. Борода и усы, как и у монголоидов, растут слабо. Лицо узкое и низкое, нос широкий. Глаза широко открытые, складка верхнего века развита слабо, эпикантус у взрослых обычно отсутствует. Характерно также выступание челюстной части лица (прогнатный череп). Губы обычно толстые, нередко вздутые. Классические негроиды живут в Африке. Схожие люди встречаются по всему экваториальному поясу Старого Света.

Адаптивный тип представляет собой норму биологической реакции на комплекс условий окружающей среды и проявляется в развитии морфофункциональных, биохимических и иммунологических признаков, обеспечивающих оптимальную приспособленность к данным условиям обитания. В комплексы признаков адаптивных типов из разных географических зон входят общие и специфические элементы. К первым относят, например, показатели костно-мускульной массы тела, количество иммунных белков сыворотки крови человека. Такие элементы повышают общую сопротивляемость организма к неблагоприятным условиям среды. Специфические элементы отличаются разнообразием и тесно связаны с преобладающими условиями в данном месте обитания — гипоксией, жарким или холодным климатом. Именно их сочетание служит основанием к выделению адаптивных типов: арктического, тропического, зоны умеренного климата, высокогорного, пустынь и др.

22. Понятие среды обитания человека и определение ее качества.

Благодаря наиболее высокому уровню организации человека, которого он достиг как биосоциальное существо с помощью развитой психики, его взаимоотношение со средой обитания имеют существенные особенности.

Во-первых, человек как экологический фактор в отличие от животных не только пользуется природными ресурсами, но, действуя на окружающую среду целенаправленно и осознано, господствует над ней, адаптирует условия к своим потребностям. Это достигается благодаря наличию высокоорганизованной психики (психосоматическая адаптация), что позволяет ему заселять самые разнообразные условия обитания.

Во-вторых, человечество представляет собой единственный на Земле вид, обитающий повсеместно, что превращает его в экологический фактор с глобальным распространением влияния. Благодаря воздействию на все главные компоненты биосферы влияние человечества достигается в самых отдаленных экологических зон планенты. Печальным примером этому служит, в частности, обнаружение ДДТ в печени пингвинов и тюленей, отловленных в Антарктиде, где никогда ни один из этих инсектицидов не применялся. Еще одна особенность человека как экологического фактора заключается в активном, целенаправленным, осознанном воздействии на окружающую среду. Сознание человека обращается им на изменение Среды обитания. Экологический оптимум существования человека на основе его биологических и психических процессов ограничен, и возможность широкого расселения достигается не путем изменения людьми их собственной физиологии и психики, а путем создания очеловеченной Среды.

Созданием вокруг себя искусственной Среды обусловливается также и специфика человека как объекта действия экологических факторов. Это действие всегда опосредовано результатами производственной деятельности людей. В результате естественные экосистемы вытесняются антропогенными экосистемами, абсолютно доминирующим экологическим фактором которых является сам человек. Среда обитания человека таким образом включает биоприродный и социально-культурный компоненты, или естественную и искусственную Среды. Причем, в естественной и культурной средах человек представлен как биосоциальное существо.

Факторы естественной и искусственной Среды оказывают на человека постоянное влияние. Результаты действия природных факторов, различающихся в различных районах обитаемой части планеты, на протяжении истории человечества проявляются в настоящее время в экологической дифференциации населения Земного шара, подразделении его на расы и адаптивные типы. Социальные факторы обусловливают образование и закономерную смену хозяйственно-культурных типов сообщества людей (охотники, рыболовы и т. п.). Биологические характеризуют формирования этносов (народы, нации).

Формирование хозяйственно-культурных типов и этносов зависит от естественной Среды обитания людей. Эта зависимость была наиболее сильна на ранних стадиях развития человеческого общества. Однако уже тогда и особенно в более поздние периоды развития человечества зависимость формирования хозяйственно-культурных и этнических типов от природных условий опосредовалась уровнем социально-экономического и культурного развития народа*. На всех этапах истории общество осознано приспосабливает окружающую среду к собственным нуждам. Инструментом этого приспособления, связующим звеном между естественной и очеловеченной средой, служит разум и направленная трудовая деятельность людей, в процессе которой человек создает хозяйственную и культурную среду, от которой зависят образ жизни, показатели здоровья, структура заболеваемости.

Среда обитания человека представляет собой переплетение взаимодействующих биологических, психических и антропогенных экологических факторов, набор которых различается в разных природно-географических и экономических регионах планеты. В таких условиях необходим единый интегральный критерий качества Среды с точки зрения ее пригодности для обитания человека. Согласно Уставу Всемирной организации здравоохранения, принятому в 1968 г., этим критерием служит состояние здоровья населения. В исследования по экологии человека термин “здоровье” используют в широком смысле как показатель полного физического, психического и душевного благополучия.

Главная линия развития экологии человека в настоящее время нацелена на решение проблем управления средой, выработку путей рационального природопользования, оптимизации условий жизни людей в различных антропоэкологических системах.