Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Линейная Алгебра от 2 октября 2013.doc
Скачиваний:
755
Добавлен:
10.02.2015
Размер:
3.44 Mб
Скачать

7. Арифметическое n-мерное векторное пространство

7.1. Основные понятия

В предыдущих разделах уже встречалось понятие о наборе из действительных чисел, расположенных в определенном порядке. Это матрица-строка (или матрица-столбец) и решение системы линейных уравнений с n неизвестными. Эти сведения можно обобщить.

Определение 7.1. n-мерным арифметическим вектором называется упорядоченный набор из n действительных чисел.

Значит а = (1, 2, …, n), где i  R, i = 1, 2, …, n – общий вид вектора. Число n называется размерностью вектора, а числа i называются его координатами.

Например: а = (1, –8, 7, 4, ) – пятимерный вектор.

Все множество n-мерных векторов принято обозначать как Rn.

Определение 7.2. Два вектора а = (1, 2, …, n) и b = (1, 2, …, n) одинаковой размерности равны тогда и только тогда, когда равны их соответствующие координаты, т. е. 1 = 1, 2 = 2, …, n = n.

Определение 7.3. Суммой двух n-мерных векторов а = (1, 2, …, n) и b = (1, 2, …, n) называется вектор a + b = (1 + 1, 2 + 2, …, n + n).

Определение 7.4. Произведением действительного числа k на вектор а = (1, 2, …, n) называется вектор kа = (k1k2, …, kn)

Определение 7.5. Вектор о = (0, 0, …, 0) называется нулевым (или нуль–вектором).

Легко проверить, что действия (операции) сложения векторов и умножения их на действительное число обладают следующими свойствами:  a, b, c  Rn,  k, l  R :

  1. a + b = b + a;

  2. a + (b c) = (a + b) + c;

  3. a + о = a;

  4. a + (–a) = о;

  5. 1a = a, 1  R;

  6. k(la) = l(ka) = (lk)a;

  7. (k + l)a = ka + la;

  8. k(a + b) = ka + kb.

Определение 7.6. Множество Rn с заданными на нем операциями сложения векторов и умножения их на действительное число называется арифметическим n-мерным векторным пространством.

7.2. Линейная зависимость и независимость системы векторов

Пусть а1, а2, …, аm множество из m штук n-мерных векторов, о котором принято говорить – система векторов, и k1, k2, …, km – произвольные действительные числа.

Определение 7.7. Линейной комбинацией системы векторов а1а2, …, аm с коэффициентами k1k2, …, km называется вектор b = k1а1 + k2а2 + … + kmаm.

Принято говорить: вектор b линейно выражается через векторы а1а2, …, аm или вектор b разложен (раскладывается) по векторам а1а2, …, аm.

Пример 7.1. Даны векторы а1 = (3, 2, –1, 0), а2 = (–1, 0, 4, 1), а3 = (–2, –2, –3, –1). Найти вектор b = 2а1 – а2 – а3.

Решение. b = 2а1 – а2 – а3 = 2(3, 2, –1, 0) + (–1)(–1, 0, 4, 1) + (–1)(–2, –2, –3, –1) = (6, 4, –2, 0) + (1, 0, –4, –1) + (2, 2, 3, 1) = (9, 6, –3, 0).

Пример 7.2. Даны векторы а1 = (6, 4, –2), а2 = (–1, 0, 4), а3 = (–2, –2, –3). Найти вектор b = а1 + 2а2 + 2а3.

Решение. b = а1 + 2а2 + 2а3 = (6, 4, –2) + 2(–1, 0, 4) + 2(–2, –2, –3) = = (6, 4, –2) + (–2, 0, 8) + (–4, –4, –6) = (0, 0, 0) = о.

Определение 7.8. Линейной оболочкой системы векторов а1, а2, …, аm называется множество всех линейных комбинаций этих векторов. Принятое обозначение: L(а1, а2, …, аm).

Из определения следует, что

L(а1а2, …, аm) = {k1а1 + k2а2 + … + kmam, ki  R}.

Если вектор b линейно выражается через векторы а1, а2, …, аm, то в этих обозначениях можно записать, что b  L(а1а2, …, аm).

Определение 7.9. Линейная комбинация системы векторов а1, а2, …, аm вида 0а1 + 0а2 + … + 0аm называется нулевой. Нулевая линейная комбинация векторов равна нулевому вектору.

Определение 7.10. Система векторов а1, а2, …, аm называется линейно независимой, если линейная комбинация этих векторов равна нулевому вектору тогда и только тогда, когда эта комбинация нулевая, то есть

k1а1 + k2а2 + … + kmam = о  k1 = 0, k2 = 0, …, km = 0.

Равносильное определение линейно независимой системы векторов звучит следующим образом: система векторов линейно независима тогда и только тогда, когда ни один вектор нельзя выразить через остальные векторы.

Определение 7.11. Система векторов а1, а2, …, аm называется линейно зависимой, если существуют коэффициенты k1, k2,…, km, не все одновременно равные нулю и такие, что k1а1 + k2а2 + … + kmam = о.

Равносильное определение линейно зависимой системы векторов звучит следующим образом: система векторов линейно зависима тогда и только тогда, когда в этой системе существует хотя бы один вектор, который линейно выражается через остальные.

Если система векторов состоит только из одного вектора, то эта система линейно зависима, если этот вектор нулевой, и линейно независима, если он ненулевой.

Система векторов, содержащая два вектора, линейно зависима в случае пропорциональности координат этих векторов, и линейно независима в противном случае.