Добавил:
Группа АСБ факультета ТЭС Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учеба АСБ 2 курс / Лабораторная работа 16 «Свечи зажигания».doc
Скачиваний:
14
Добавлен:
04.08.2023
Размер:
468.99 Кб
Скачать

Федеральное агентство железнодорожного транспорта

Федеральное государственное бюджетное образовательное учреждение высшего образования

ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА АЛЕКСАНДРА I

Кафедра «Наземные транспортно-технологические комплексы»

лабораторная работа № 16

«Свечи зажигания»

дисциплина

«Конструкция и эксплуатационные свойства ТиТТМО»

Выполнил

Студент группы АСБ-016

Федотов Георгий

Санкт-Петербург

2021

Цель работы: Изучить свечи зажигания транспортных средств.

Для этого необходимо решить следующие задачи:

1. Изучить общие теоретические сведения

2. Изучить параметры свечей зажигания

3. Изучить маркировку свечей зажигания

4. Написание выводов по работе

  1. Общие теоретические сведения

Свеча зажигания – это важнейший элемент системы зажигания двигателя, который непосредственно осуществляет воспламенение топливовоздушной смеси в камере сгорания. В современных автомобилях используются свечи различных конструкций и эксплуатационных параметров, но все они имеют сходный принцип работы.

Рис. 1. Конструкция стандартных свечей зажигания.

Свеча зажигания состоит из металлического корпуса, изолятора и центрального проводника. Cвечи могут иметь встроенный резистор между контактным выводом и центральным электродом.

Контактный вывод, расположенный в верхней части свечи, предназначен для подключения свечи к высоковольтным проводам системы зажигания или непосредственно к индивидуальной высоковольтной катушке зажигания. Могут встречаться несколько слегка различных вариантов конструкции. Наиболее часто провод к свече зажигания имеет защёлкивающийся контакт, который надевается на вывод свечи. В других типах конструкции провод может крепиться к свече гайкой. Часто вывод свечи делают универсальным: в виде оси с резьбой и навинчивающегося защёлкивающегося контакта.

Изолятор, как правило, делается из алюминиево-оксидной керамики, которая должна выдерживать температуры от 450 до 1 000 °C и напряжение до 60 000 В[уточнить]. Точный состав изолятора и его длина частично определяют тепловую маркировку свечи.

Часть изолятора, непосредственно прилегающая к центральному электроду, наиболее сильно влияет на качество работы свечи зажигания. Применение керамического изолятора в свече предложено Г. Хонольдом вследствие перехода к высоковольтному зажиганию.

Рёбра изолятора затрудняют электрический пробой по его поверхности, удлиняя путь поверхностных токов (эквивалент более длинному изолятору).

Уплотнители предназначены для предотвращения прорыва горячих газов из камеры сгорания.

Корпус («юбка») служит для ввёртывания свечи в резьбу головки блока цилиндров, для отвода тепла от изолятора и электродов, а также является проводником электричества от «массы» автомобиля к боковому электроду.

Боковой электрод, как правило, изготавливается из легированной никелем и марганцем стали. Приваривается контактной сваркой к корпусу. Боковой электрод, зачастую, очень сильно нагревается во время работы, что может привести к калильному зажиганию. Некоторые конструкции свечей используют несколько боковых электродов. Для увеличения долговечности электроды дорогих свечей снабжают напылением из платины и других благородных металлов. Заявленный ресурс таких автомобильных свечей до 100.000 км, применение тем выгоднее, что в некоторых V-образных двигателях, расположенных поперёк, замена свечей довольно трудоёмка.

Центральный электрод как правило соединяется с контактным выводом свечи через стеклогерметик с резистором, это позволяет уменьшить радиопомехи от системы зажигания. Наконечник центрального электрода изготавливают из железо-никелевых сплавов с добавлением меди и хрома. Иногда на рабочую поверхность напыляют иттрий, в некоторых используют платиновые напайки или утонченный электрод из иридия. Обычно центральный электрод — наиболее горячая деталь свечи. Кроме того, центральный электрод должен обладать хорошей способностью к эмиссии электронов, для облегчения искрообразования (предполагается, что искра проскакивает в той фазе импульса напряжения, когда центральный электрод служит катодом). Поскольку напряжённость электрического поля максимальна вблизи краёв электрода, искра проскакивает между острым краем центрального электрода и краем бокового электрода. В результате этого края электродов подвергаются наибольшей электрической эрозии. Раньше свечи периодически вынимали и удаляли следы эрозии наждаком. Сейчас, благодаря применению сплавов с редкоземельными и благородными металлами (иттрий, иридий, платина), нужда в зачистке электродов практически отпала. Срок службы при этом существенно вырос.

Основной задачей свечи является формирование искры и ее поддержание в течение необходимого количества времени. Для этого низкое напряжение от аккумулятора автомобиля преобразуется в высокое (до 40 000 В) в катушке зажигания, а затем поступает на электроды свечи, между которыми выполнен зазор. “Плюс” от катушки приходит на центральный электрод, “минус” – на боковом от двигателя.

В момент формирования напряжения на электродах (“плюс” от катушки на центральном и “минус” на боковом от двигателя), достаточного для преодоления (пробоя) сопротивления среды в зазоре, между ними возникает искра.

    1. Параметры свечей зажигания.

Параметры свечей зажигания можно разделить (весьма условно), на параметры, связанные с работой свечей (длина искрового промежутка или зазор, калильное число, материал электродов) и на параметры геометрические (диаметр, длина и шаг резьбы, размер ключа).

Зазор — минимальное расстояние между центральным и боковым электродом.

Величина зазора — это компромисс между «мощностью» искры, то есть размерами плазмы, возникающей при пробое воздушного зазора и между возможностью пробить этот зазор в условиях сжатой воздушно-бензиновой смеси.

Чем больше зазор — тем больше размеры искры, тем больше вероятность воспламенения смеси и больше зона воспламенения. Всё это положительно влияет на потребление топлива, равномерность работы, понижает требования к качеству топлива, повышает мощность. Слишком увеличивать зазор тоже нельзя, иначе высокое напряжение может пробить высоковольтные провода на корпус, «бегунок» распределителя и чаще появляются пропуски зажигания. Это приводит к троению двигателя и его нестабильной работе.

Маленький зазор не очень хорош. Искра будет надежной и возникать всегда, но будет слабой. А это опять означает пропуски зажигания и нестабильную работу мотора. А тем, у кого карбюраторный двигатель вообще должно быть знакомо понятие “залить свечи”. Когда искра по каким-то причинам не возникает, а подача топлива идет, в какой-то момент свечи зажигания уже не в состоянии дать искру, потому что на них находится слишком много бензина.

 Зазор свечей не является константой, один раз заданной. Он может и должен подстраиваться под конкретную ситуацию эксплуатации двигателя. При переоборудовании автомобиля под более дешевое альтернативное топливо - сжиженный и сжатый газ (LPG, CNG), искровой зазор следует уменьшить из-за большего пробивного напряжения, чем у бензиновой смеси.

Калильное число – это способность свечи зажигания давать несанкционированное зажигание топливной смеси в результате нагрева элементов свечи, а не в результате подачи искры.

Тепловой диапазон – это способность передавать тепло от свечи на головку блока цилиндров для поддержания оптимальной температуры. Соприкасаясь с продуктами сгорания в процессе работы, свеча зажигания нагревается. Оптимальный диапазон температур от 400 до 900 градусов.

Несоблюдение теплового диапазона вследствие некорректного подбора свечей зажигания может привести к следующим последствиям:

свеча работает при температурах ниже 400 градусов – накопление угольных и прочих отложений;

свеча работает при температурах выше 900 градусов на высоких скоростях – калильное зажигание.

Искровые свечи бензиновых двигателей по режиму работы условно подразделяют на «горячие», «холодные», «средние» — в зависимости от тепловой характеристики свечи, выражаемой её калильным числом:

«горячие» – свеча отводит меньше тепла. Чем ниже калильное число, тем свеча «горячее»;

«холодные» – свеча способна отводить больше тепла. Чем выше калильное число, тем свеча «холоднее».

Процесс воспламенения топливной смеси становится совершенно неуправляемым, если свеча слишком "горячая". Разогретые электроды свечи могут поджечь топливо в любой момент, а не в момент, который определен циклом работы ДВС. Если же свеча слишком "холодная" она не успевает самоочищаться от нагара и постепенно обрастает продуктами неполного сгорания масла, углерода, а также мазута, который неизбежно содержится в отечественном топливе.

Причем параметр калильного числа – это параметр, который получается при определенных условиях, а именно при определенном давлении, температуре и на строго определенных эталонных двигателях.

В российской классификации свечей зажигания существует деление на свечи горячие, средние, холодные и унифицированные. Каждому классу этих свечей соответствуют свои калильные числа. А именно:

Для горячих свечей: 11-14.

Для средних свечей: 17-19.

Для холодных свечей: 20 и больше.

Именно эти цифры, которые определяют калильное число, указываются в маркировке отечественных свечей зажигания.

Для свечей импортного производства существует совершенно другая маркировка калильного числа свечей зажигания. Да и измерение этого параметра иностранные производители определяют по-другому.

Калильное число для некоторых производителей – это время в секундах, которое нужно для того, чтобы электроды свечи зажигания разогрелись до такой температуры, чтобы началось несанкционированное воспламенение топлива. Причем этот параметр определяется не на каких-то штатных автомобильных моторах, а на специальных эталонных двигателях, где поддерживаются определенные заданные параметры.

Цифры, которые содержатся в маркировке импортных свечей зажигания, совершенно не совпадают с маркировкой на отечественных свечах. Да и сравнивать эти параметры совершенно бессмысленно. Но для того чтобы перевести отечественную маркировку, связанную с калильным числом, с аналогичной маркировкой на импортных свечах, есть специальная таблица, по которой можно сделать этот перевод. Эта таблица подходит для большинства известных производителей свечей зажигания, но далеко не для всех.

Табл. 1. Калильное число у разных производителей.

Как видно, как минимум 3 производителя (NGK, DENSO, AutoLite) допускают большой диапазон разброса калильного числа в пределах одной группы.

В зависимости от используемых при производстве электродов металлов, свечи зажигания делятся на:

иридиевые;

платиновые, серебряные, золотые и пр.

обычные медные, либо хромо-никелевые.

Медные (или хромо-никелевые) свечи – это стандартный вариант. Стоят недорого ( около 100 рублей за свечу), вырабатывают свой ресурс через 25-30 тыс. км. Выбирая такую свечу, вы покупаете зарекомендовавший себя качественный продукт и при этом не переплачиваете.

Платиновые свечи (либо из другого драгоценного металла) – продвинутая и улучшенная технология.

Рис. 2 Платиновый напайки на центральном и боковых электродах.

Применение платины при изготовлении электрода дает свече больший срок эксплуатации. Если платиновая свечка соответствует требуемым параметрам, вы отъездите с ней не меньше 50 тыс. км. Кроме того, платиновые свечки менее подвержены образованию нагара, что позволяет двигателю полнее раскрывать свой ресурс. Иными словами, ехать машина будет лучше.

Иридиевые свечи. Применение в изготовлении свечей иридия улучшает характеристики свечи в разы. Идеальное, бесперебойное искрообразование позволяет двигателю работать лучше. Ресурс такой свечи составляет около 100 000 км.

Диаметр резьбы. По этому признаку в современных легковых автомобилях различают в основном три вида свечей зажигания: с резьбой диаметром 18, 14 или 12 мм. Резьба диаметром 10 мм в автомобильных ДВС встречается редко.

Тип резьбы. Автомобильные свечи зажигания бывают с цилиндрической или конической резьбой. Цилиндрическая резьба встречается гораздо чаще. Монтаж такой свечи требует установки дополнительного уплотнительного кольца. Конические свечи герметизируют камеру сгорания только за счет формы резьбы и не нуждаются в дополнительных уплотнительных элементах.

Длина юбки (резьбы). Для гражданских легковых авто в подавляющем большинстве случаев различают короткую юбку (19 мм) и длинную (26,5 мм). Известное еще несколько вариантов юбок свечей для двигателей легковых авто, но сейчас они встречаются крайне редко.

Размер шестигранника под ключ. Сейчас почти все свечи изготавливаются под следующие размеры ключей: 14, 16, 18, 21. Размер 16 наиболее популярный.