Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpora.doc
Скачиваний:
262
Добавлен:
13.02.2015
Размер:
2.67 Mб
Скачать

1магнитное взаимодействие постоянных токов. Вектор магнитной индукции. Закон Ампера. Закон Био-Савара-Лапласа. Магнитная индукция прямого и кругового тока.§ 109. Магнитное поле и его характеристикиОпыт показывает, что, подобно тому, как в пространстве, окружающем электриче­ские заряды, возникает электростатиче­ское поле, так в пространстве, окружаю­щем токи и постоянные магниты, возника­ет силовое поле, называемое магнитным. Наличие магнитного поля обнаруживается по силовому действию на внесенные в него проводники с током или постоянные маг­ниты. Особенноси магнитного поля:: действие только на движущиеся в эл. поле заряды. Опыт показывает, что характер воздействия магнитного поля на ток различен в за­висимости от формы проводника, по кото­рому течет ток, от расположения провод­ника и от направления тока. Следователь­но, чтобы охарактеризовать магнитноеполе, надо рассмотреть его действие на определенный ток.Подобно тому, как при исследовании электростатического поля использовались точечные заряды, при исследовании маг­нитного поля используется замкнутый плоский контур с током (рамка с током), размеры которого малы по сравнению с расстоянием до токов, образующих маг­нитное поле. Ориентация контура в про­странстве характеризуется направлением нормали к контуру. В качестве положи­тельного направления нормали принима­ется направление, связанное с током пра­вилом правого винта, т. е. за положитель­ное направление нормали принимается направление поступательного движения винта, головка которого вращается в направлении тока, текущего в рамке (рис. 160).

Опыты показывают, что магнитное поле оказывает на рамку с токомориентирую­щее действие, поворачивая ее определен­ным образом. Этот результат связывается с определенным направлением магнитного поля. За направление магнитного поля в данной точке принимается направление, вдоль которого располагается положи­тельная нормаль к рамке (рис. 161). За направление магнитного поля может быть также принято направление, совпадающее с направлением силы, которая действует на северный полюс магнитной стрелки, помещенной в данную точку. Так как оба полюса магнитной стрелки лежат в близ­ких точках поля, то силы, действующие на оба полюса, равны друг другу. Следо­вательно, на магнитную стрелку действу­ет пара сил, поворачивающая ее так, чтобы ось стрелки, соединяющая южный полюс с северным, совпадала с направле­нием поля.Рамкой с током можно воспользовать­ся также и для количественного описания магнитного поля. Так как рамка с током испытывает ориентирующее действие по­ля, то на нее в магнитном поле действует пара сил. Вращающий момент сил зависит как от свойств поля в данной точке, так и от свойств рамки: М=[рmВ], (109.1)где В — вектор магнитной индукции, яв­ляющейся количественной характеристи­кой магнитного поля, рm вектор магнит­ного момента рамки с током. Для плоского контура с током Ipm = ISn, (109.2) где S — площадь поверхности контура (рамки), n—единичный вектор нормали к поверхности рамки. Направление рmсовпадает, таким образом, с направлением положительной нормали. Если в данную точку магнитного поля помещать рамки с различными магнитны­ми моментами, то на них действуют раз­личные вращающие моменты, однако от­ношение Mmax/pm max — максимальный вращающий момент) для всех контуров одно и то же и поэтому может служить характеристикой магнитного поля, назы­ваемой магнитной индукцией: В=Мmaxm.Магнитная индукция в данной точке однородного магнитного поля определяет­ся максимальным вращающим моментом, действующим на рамку с магнитным мо­ментом, равным единице, когда нормаль к рамке перпендикулярна направлению поля. Следует отметить, что вектор В мо­жет быть выведен также из закона Ампера (см. §111) и из выражения для силы Лоренца (см. § 114).Так как магнитное поле является сило­вым, то его, по аналогии с электрическим, изображают с помощью линий магнитной индукции — линий, касательные к кото­рым в каждой точке совпадают с направ­лением вектора В. Их направление зада­ется правилом правого винта: головка винта, ввинчиваемого по направлению то­ка, вращается в направлении линий маг­нитной индукции.

Линии магнитной индукции можно «проявить» с помощью железных опилок, намагничивающихся в исследуемом поле и ведущих себя подобно маленьким маг­нитным стрелкам. На рис. 162, а показаны линии магнитной индукции поля кругового тока, на рис. 162, б — линии магнитной индукции поля соленоида (соленоид — равномерно намотанная на цилиндрическую поверхность проволочная спираль, по которой течет электрический ток).

Линии магнитной индукции всегда за­мкнуты и охватывают проводники с током. Этим они отличаются от линий напряжен­ности электростатического поля, которые являются разомкнутыми (начинаются на положительных зарядах и кончаются на отрицательных).

Вектор маг­нитной индукции В характеризует резуль­тирующее магнитное поле, создаваемое всеми макро- и микротоками, т. е. при одном и том же токе и прочих равных условиях вектор В в различных средах будет иметь разные значения.

Магнитное полемакротоков описыва­ется вектором напряженности Н. Для од­нородной изотропной среды вектор маг­нитной индукции связан с вектором на­пряженности следующим соотношением:В=0Н, (109.3)где 0 — магнитная постоянная,  — без­размерная величина — магнитная прони­цаемость среды, показывающая, во сколь­ко раз магнитное поле макротоков Н уси­ливается за счет поля микротоков среды. Сравнивая векторные характеристики электростатического (Е и D) и магнитного (В и Н) полей, укажем, что аналогом вектора напряженности электростатиче­ского поля Е является вектор магнитной индукции В, так как векторы Е и В опреде­ляют силовые действия этих полей и за­висят от свойств среды. Аналогом вектора электрического смещения D является век­тор напряженности Н магнитного поля.§ 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля Закон Био — Савара — Лапласадля проводника с током I, элемент которого dl создает в некоторой точке А (рис. 164) индукцию поля dB, записывается в виде где dl — вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током, r — радиус-вектор, проведенный из элемента dl проводника в точку А поля, r — модуль радиуса-векто­ра г. Направление dB перпендикулярно dl и r, т. е. перпендикулярно плоскости, в ко­торой они лежат, и совпадает с каса­тельной к линии магнитной индукции. Это направление может быть найдено по пра­вилу нахождения линий магнитной индук­ции (правилу правого винта): направле­ние вращения головки винта дает направ­ление dB, если поступательное движение винта соответствует направлению тока в элементе. Модуль вектора dB определяется вы­ражениемгде а — угол между векторами dl и г. Для магнитного поля, как и для элек­трического, справедлив принцип суперпо­зиции: магнитная индукция результирую­щего поля, создаваемого несколькими то­ками или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каж­дым током или движущимся зарядом в от­дельности:Расчет характеристик магнитного поля (В и Н) по приведенным формулам в об­щем случае довольно сложен. Однако если распределение тока имеет определенную симметрию, то применение закона Био — Савара — Лапласа совместно с принци­пом суперпозиции позволяет довольно просто рассчитать конкретные поля. Рас­смотрим два примера.1. Магнитное поле прямого тока — тока, текущего по тонкому прямому проводу бесконечной длины (рис. 165). В произвольной точке А, удаленной от оси проводника на расстояние R, векторы dB от всех элементов тока имеют одина­ковое направление, перпендикулярное плоскости чертежа («к нам»). Поэтому сложение векторов dB можно заменить сложением их модулей. В качестве по­стоянной интегрирования выберем угол а (угол между векторами dl и r), выразив через него все остальные величины. Из рис. 165 следует, что (радиус дуги CD вследствие малости dl равен r, и угол FDC по этой же причине можно считать прямым). Подставив эти выражения в (110.2), получим, что маг­нитная индукция, создаваемая одним эле­ментом проводника, равнаТак как угол а для всех элементов прямо­го тока изменяется в пределах от 0 до я, то, согласно (110.3) и (110.4), Следовательно, магнитная индукция поля прямого тока 2. Магнитное поле в центре кругового проводника с током (рис. 166). Как следу­ет из рисунка, все элементы кругового проводника с током создают в центре магнитное поле одинакового направления — вдоль нормали от витка. Поэтому сложе­ние векторов dB можно заменить сложени­ем их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору (sin=1) и расстояние всех эле­ментов проводника до центра кругового тока одинаково и равно R, то, согласно (110.2), ТогдаСледовательно, магнитная индукция поля в центре кругового проводника с током§ 111. Закон Ампера. Взаимодействие параллельных токов.Магнитное поле (см. § 109) оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, ис­пытываемый рамкой, есть результат дейст­вия сил на отдельные ее элементы. Обоб­щая результаты исследования действия магнитного поля на различные проводники с током, Ампер установил, что сила dF, с которой магнитное поле действует на элемент проводника dl с током, находяще­гося в магнитном поле, прямо пропорцио­нальна силе тока I в прводнике и век­торному произведению элемента длиной dl проводника на магнитную индук­цию В:dF = I[dl, В]. (111.1) Направление вектора dF может быть найдено, согласно (111.1), по общим пра­вилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы, действующей на ток. Модуль силы Ампера (см. (111.1)) вычисляется по формулеdF = IBdlsin, (111.2) где a — угол между векторами dl и В.

Закон Ампера применяется для опре­деления силы взаимодействия двух токов. Рассмотрим два бесконечных прямолиней­ных параллельных тока I1 и I2 (направле­ния токов указаны на рис. 167), расстоя­ние между которыми равно R. Каждый из проводников создает магнитное поле, ко­торое действует по закону Ампера на дру­гой проводник с током. Рассмотрим, с ка­кой силой действует магнитное поле тока I1 на элемент dl второго проводника с то­ком I2. Ток I1 создает вокруг себя магнит­ное поле, линии магнитной индукции кото­рого представляют собой концентрические окружности. Направление вектора b1 за­дается правилом правого винта, его мо­дуль по формуле (110.5) равен Направление силы dF1, с которой поле B1 действует на участок dl второго тока, определяется по правилу левой руки и указано на рисунке. Модуль силы, со­гласно (111.2), с учетом того, что угол  между элементами тока I2 и вектором B1 прямой, равен dF1=I2B1dl, или, подставляя значение для В1, получимРассуждая аналогично, можно пока­зать, что сила dF2, с которой магнитное поле тока I2 действует на элемент dl пер­вого проводника с током I1, направлена в противоположную сторону и по модулю равна Сравнение выражений (111.3) и (111.4) показывает, чтоdF1=dF2, т. е. два параллельных тока одинакового направления притягиваются друг к другу с силой Если токи имеют противоположные на­правления, то, используя правило левой руки, можно показать, что между ними действует сила отталкивания, определяе­мая формулой (111.5). §112.Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля Если два параллельных проводника с то­ком находятся в вакууме (=1), то сила взаимодействия на единицу длины про­водника, согласно (111.5), равна Для нахождения числового значения 0 воспользуемся определением ампера, согласно которому при I1=I2=1А и R=1 м dF/dl=2•10-7 Н/м. Подставив это значение в формулу (112.1), получим 0=4•10-7 Н/А2=4•10-7 Гн/м, где генри (Гн) — единица индуктивности (см. §126). Закон Ампера позволяет определить единицу магнитной индукции В. Предпо­ложим, что элемент проводника dl с током I перпендикулярен направлению магнит­ного поля. Тогда закон Ампера (см. (111.2)) запишется в виде dF=IBdl, откуда Единица магнитной индукции — тесла (Тл): 1 Тл—магнитная индукция такого однородного магнитного поля, которое действует с силой в 1 Н на каждый метр длины прямолинейного проводника, распо­ложенного перпендикулярно направлению поля, если по этому проводнику проходит ток в 1 А:1Тл=1Н/(А•м). Так как 0= 4•10-7 Н/А2, а в случае вакуума (=1), согласно (1.09.3), В =0H, то для данного случая H=В/0. Единица напряженности магнитного поля — ампер на метр (А/м): 1 А/м — напряженность такого поля, магнитная индукция которого в вакууме равна 4•10-7 Тл.

2 Тепловое излучение. Спектральные характеристики теплового излучения. Закон Кирхгофа. Абсолютно черное тело. Законы Стефана-Больцмана и Вина. Формула Рэлея-Джинса и «ультрафиолетовая катастрофа». 197. Тепловое излучение и Его характеристики Тела, нагретые до достаточно высоких температур, светятся. Свечение тел, обусловленное нагреванием, называется тепловым (температурным) излучением. Тепловое излучение характеризуется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких - преимущественно длинные (инфракрасные). Тепловое излучение - практически единственный вид излучения, который может быть равновесным. Количественной характеристикой теплового излучения служит спектральная плотность энергетической светимости (излучательностн) тела - мощность излучения с единицы площади поверхности тела в интервале частот единичной ширины:где dWизлvdv - энергия электромагнитного излучения, испускаемого за единицу времени (мощность излучения) с единицы площади поверхности тела в интервале частот от v до v+dv.Единица спектральной плотности энергетической светимости (Rv,T) джоуль на метр в квадрате (Дж/м2).Записанную формулу можно представить в виде функции длины волны: где знак минус указывает на то, что с возрастанием одной из величин (V или l) другая величина убывает. Поэтому в дальнейшем знак минус будем опускать. Таким образом,        (197.1)С помощью формулы (197.1) можно перейти от Rv,T к Rl,Tи наоборот.Зная спектральную плотность энергетической светимости, можно вычислить интегральную энергетическую светимость (интегральную нзлучательность) (ее называют про сто энергетической светимостью тела), просуммировав по всем частотам:        (197.2) Способность тел поглощать падающее на них излучение характеризуется спектральной поглощательной способностью 

 показывающей, какая доля энергии, приносимой за единицу времени на единицу площади поверхности тела падающими на нее электромагнитными волнами с частота ми от v до v+dv, поглощается телом. Спектральная поглощательная способность - величина безразмерная. Величины Rv,T и Аv,T зависят от природы тела, его термодинамической температуры и при этом различаются для излучений с различными частотами. Поэтому эти величины относят к определенным Т и v (вернее, к достаточно узкому интервалу частот от v до v+dv).

Тело, способное поглощать полностью при любой температуре все падающее на него излучение любой частоты, называется черным. Следовательно, спектральная поглощательная способность черного тела для всех частот и температур тождественно равна единице (Ачv,T = 1). Абсолютно черных тел в природе нет, однако такие тела, как сажа, платиновая чернь, черный бархат и некоторые другие, в определенном интервале частот по своим свойствам близки к ним.

Идеальной моделью черного тела является замкнутая полость с небольшим отверстием О, внутренняя поверхность которой зачернена (рис. 286). Луч света, попавший внутрь такой полости, испытывает многократные отражения от стенок, в результате чего интенсивность вышедшего излучения оказывается практически равной нулю. Опыт показывает, что при размере отверстия, меньшего 0,1 диаметра полости, падающее излучение всех частот полностью поглощается. Вследствие этого открытые окна домов со стороны улицы кажутся черными, хотя внутри комнат достаточно светло из-за отражения света от стен.

Наряду с понятием черного тела используют понятие серого тела - тела, поглощательная способность которого меньше единицы, но одинакова для всех частот и зависит только от температуры, материала и состояния поверхности тела. Таким образом, дня серого тела Асv,= АТ = const <1.

Исследование теплового излучения сыграло важную роль в создании квантовой теории света, поэтому необходимо рассмотреть законы, которым оно подчиняется.

 

§ 198. ЗАКОН КИРХГОФА.Кирхгоф, опираясь на второй закон термодинамики и анализируя условия равновесного излучения в изолированной системе тел, установил количественную связь между спектральной плотностью энергетической светимости и спектральной поглощательной способностью тел. Отношение спектральной плотности энергетической светимости к спектральной поглощательной способности не зависит от природы тела; оно является для всех тел универсальной функцией частоты (длины волны) и температуры (закон Кирхгофа):                                                (198.1)

Для черного тела Ачv,T ≡ 1поэтому из закона Кирхгофа (см. (198.1)) вытекает, что Rv,T для черного тела равнаrv,T. Таким образом, универсальная функция Кирхгофа rv,T есть не что иное, как спектральная плотность энергетической светимости черного тела. Следовательно, согласно закону Кирхгофа, для всех тел отношение спектральной плотности энергетической светимости к спектральной плотности энергетической светимости к спектральной поглощательной способности равно спектральной плотности энергетической светимости черного тела при той же температуре и частоте.

Из закона Кирхгофа следует, что спектральная плотность энергетической светимости любого тела в любой области спектра всегда меньше спектральной плотности энергетической светимости черного тела (при тех же значениях Т и v), так как Аv,T 1 и поэтому Rv,T < rv,T. Кроме того, из (198.1) вытекает, что если тело при данной температуре T не поглощает электромагнитные волны в интервале частот от v до v+dv, то оно их в этом интервале частот при температуреT и не излучает, так как при Аv,T 0 Rv,T = 0.

Используя закон Кирхгофа, выражение для энергетической светимости тела (197.2) можно записать в виде, где 2е выражение для сегоро тела.

                  

                                     (198.2)

-энергетическая светимостьчерного тела (зависит только от температуры).

Закон Кирхгофа описывает только тепловое излучение, являясь настолько характерным для него, что может служить надежным критерием для определения природы излучения. Излучение, которое закону Кирхгофа не подчиняется, не является тепловым.

 

§ 199. Законы Стефана-Больцмана и смещения Вина

 

Из закона Кирхгофа (см. (198.1)) следует, что спектральная плотность энергетической светимости черного тела является универсальной функцией, поэтому нахождение ее явной зависимости от частоты и температуры является важной задачей теории теплового излучения.

Австрийский физик И. Стефан (183S-1893), анализируя экспериментальные данные (1879), и Л. Больцман, применяя термодинамический метод (1884), решили эту задачу лишь частично, установив зависимость энергетической светимости Л, от температуры. Согласно закону Стефана - Больцмана,                                    (199.1)

т. е. энергетическая светимость черного тела пропорциональна четвертой степени его термодинамической температуры;s - постоянная Стефана - Больцмана: ее экспериментальное значение равно 5,67×10-8 Вт/(м2 ×К4).

Закон Стефана - Больцмана, определяя зависимость Re от температуры, не дает ответа относительно спектрального состава излучения черного тела. Из экспериментальных кривых зависимости функции rl,T от длины волны l  при различных температурах (рис. 287) следует, что распределение энергии в спектре черного тела является неравномерным. Все кривые имеют явно выраженный максимум, который по мере повышения температуры смещается в сторону более коротких волн. Площадь, ограниченная кривой зависимости rl,T от l и осью абсцисс, пропорциональна энергетической светимости Reчерного тела и, следовательно, по закону Стефана - Больцмана, четвертой степени температуры.

                                               Рис. 287

 

Немецкий физик В. Вин (1864-1928), опираясь на законы термо- и электродинамики, установил зависимость длины волны lmax, соответствующей максимуму функции rl,T от температуры ТСогласно закону смещения Вина,                                         (199.2)

т. е. длина волны lmax, соответствующая максимальному значению спектральной плотности энергетической светимостиrl,T черного тела, обратно пропорциональна его термодинамической температуре, - постоянная Вина; ее экспериментальное значение равно 2,9×10-3 м×К. Выражение (199.2) потому называют законом смещения Вина, что оно показывает смещение положения максимума функции rl,T по мере возрастания' температуры в область коротких длин волн. Закон Вина объясняет, почему при понижении температуры нагретых тел в их спектре все сильнее преобладает длинноволновое излучение (например, переход белого каления в красное при остывании металла). 

§ 200. ФОРМУЛЫ РЭЛЕЯ - ДЖИНСА И ПЛАНКА Из рассмотрения законов Стефана - Больцмана и Вина следует, что термодинамический подход к решению задачи о нахождении универсальной функции Кирхгофа rv,T не дал желаемых результатов. Следующая строгая попытка теоретического вывода зависимости rv,T принадлежит английским ученым Д. Рэлею и Д. Джинсу (1877-1946), которые применили к тепловому излучению методы статистической физики, воспользовавшись классическим законом равномерного распределения энергии по степеням свободы.Формула Рэлея - Джннса для спектральной плотности энергетической светимости черного тела имеет вид      (200.1)

где áeñ = kT-средняя энергия осциллятора с собственной частотой v. Для осциллятора, совершающего колебания, средние значения кинетической и потенциальной энергий одинаковы (см. § 50), поэтому средняя энергия каждой колебательной степени свободы  áeñ = kT.

Как показал опыт, выражение (200.1) согласуется с экспериментальными данными только в области достаточно малых частот и больших температур. В области больших частот формула Рэлея - Джинса резко расходится с экспериментом, а также с законом смещения Вина (рис. 288). Кроме того, оказалось, что попытка получить закон Стефана - Больцмана (см. (199.1)) из формулы Рэлея - Джинса приводит к абсурду. Действительно, вычисленная с использованием (200.1) энергетическая светимость черного тела (см. (198.3))

в то время как по закону Стефана - Больцмана Re пропорциональна четвертой степени температуры. Этот результат получил название «ультрафиолетовой катастрофы». Таким образом, в рамках классической физики не удалось объяснить законы распределения энергии в спектре черного тела.

В области больших частот хорошее согласие с опытом дает формула Вина (закон излучения Вина), полученная им из общих теоретических соображений: rv1,T  Cv3Ae-Av/T где rv1,T - спектральная плотность энергетической светимости черного тела, С и А - постоянные величины. В современных обозначениях с использованием постоянной Планка, которая в то время еще не была известна, закон излучения Вина может быть записан в виде  Правильное, согласующееся с опытными данными выражение для спектральной плотности энергетической светимости черного тела было найдено в 1900 г. немецким физиком М. Планком. Для этого ему пришлось отказаться от установившегося положения классической физики, согласно которому энергия любой системы может изменятьсянепрерывно, т. е. может принимать любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями - квантами, причем энергия кванта пропорциональна частоте колебания (см. (170.3)):        (200.2)

где h=6,625×10-34 Дж×с - постоянная Планка. Так как излучение испускается порциями, то энергия осциллятора е может принимать лишь определенные дискретные значения, кратные целому числу элементарных порций энергии e0:

В данном случае среднюю энергию áeñ осциллятора нельзя принимать равной kTВ приближении, что распределение осцилляторов по возможным дискретным состояниям подчиняется распределению Больцмана (§ 45), средняя энергия осциллятора   а спектральная плотность энергетической светимости черного тела  Таким образом, Планк вывел для универсальной функции Кирхгофа формулу                 (200.3)

 которая блестяще согласуется с экспериментальными данными по распределению энергии в спектрах излучения черного тела во всем интервале частот и температур. Теоретический вывод этой формулы М. Планк изложил 14 декабря 1900 г. на заседании Немецкого физического общества. Этот день стал датой рождения квантовой физики.

 

В области малых частот, т. е. при hv << kT (энергия кванта очень мала по сравнению с энергией теплового движения kT), формула Планка (200.3) совпадает с формулой Рэлея - Джинса (200.1). Для доказательства этого разложим экспоненциальную функцию в ряд, ограничившись для рассматриваемого случая двумя первыми членами:Подставляя последнее выражение в формулу Планка (200.3), найдем, что

т. е. получили формулу Рэлея - Джинса (200.1).

Из формулы Планка можно получить закон Стефана - Больцмана. Согласно (198.3) и (200.3),  

 Введем безразмерную переменную x = hv/(kT); dx = hdv/(kT); dv = kTdx/h. Формула для Re, преобразуется к виду                    (200.4) 

. Таким образом, действительно формула Планка позволяет получить закон Стефана - Больцмана (ср. формулы (199.1) и (200.4)). Кроме того, подстановка числовых значений k, с и h дает для постоянной Стефана - Больцмана значение, хорошо согласующееся с экспериментальными данными. Закон смещения Вина получим с помощью формул (197.1) и (200.3): 

 Откуда

Значение lmax, при котором функция достигает максимума, найдем, приравняв нулю эту производную. Тогда, введя  x = hc/(kTlmax)получим уравнение  

 Решение этого трансцендентного уравнения методом последовательных приближений дает х=4,965. Следовательно, hc/(kTlmax) = 4,965, откуда 

т. е. получили закон смещения Вина (см. (199.2)).

Из формулы Планка, зная универсальные постоянные h, и с, можно вычислить постоянные Стефана - Больцманаа и Вина b. С другой стороны, зная экспериментальные значения а и bможно вычислить значения А и (именно так и было впервые найдено числовое значение постоянной Планка).

Таким образом, формула Планка не только хорошо согласуется с экспериментальными данными, но и содержит в себе частные законы теплового излучения, а также позволяет вычислить постоянные в законах теплового излучения. Следовательно, формула Планка является полным решением основной задачи теплового излучения, поставленной Кирхгофом. Ее решение стало возможным лишь благодаря революционной квантовой гипотезе Планка.                                                

3Магнитный момент кругового тока. Теорема циркуляции. Сила Лоренца. Движение заряженных частиц в однородном магнитном поле.Сила Лоренца. Движение заряженной частицы в однородном постоянном магнитном поле Основные формулы   Сила, действующая на электрический заряд  q, движущийся со скоростью  v  в магнитном поле ,          (18) где  – вектор магнитной индукции поля. Модуль силы, действующей на заряженную частицу, движущуюся в магнитном поле ,    (19)

где q – модуль заряда частицы; v – модуль вектора скорости; B – модуль вектора индукции магнитного поля, α –  угол между векторами v и  B.

 Направление силы  определяется по правилу левой руки:если ладонь левой руки расположить так, чтобы в нее входил вектор магнитной индукции B, а четыре вытянутых пальца направить вдоль скорости движения положительного заряда (против направления движения отрицательного заряда), то отогнутый на 90° большой палец покажет направление силы, действующей на заряд.

  Если заряд движется в области, где существуют одновременно электрическое и магнитное поля, то на него действует полная сила ,            (20) формула (20) называется формулой Лоренца.Методические рекомендации

1. Полная электромагнитная сила (сила Лоренца), действующая на заряд, определяется формулой (20). Данная формула справедлива как для постоянных, так и для переменных электрических и магнитных полей.

Эту силу разделяют на электрическую и магнитную составляющие. Если заряженная частица находится только в магнитном поле, то силу,  определяемую выражением (18), обычно и называют силой Лоренца.

Важная особенность силы Лоренца – она всегда перпендикулярна вектору скорости заряда и поэтому не совершает над зарядом работы. Следовательно, в постоянном магнитном поле энергия движущейся заряженной частицы всегда постоянна.

Разделение полной электромагнитной силы на электрическую и магнитную зависит от выбора системы отсчета, так как магнитная составляющая силы Лоренца меняется при переходе от одной системы отсчета к другой, а значит, меняется и электрическая составляющая.

2. Под действием силы Лоренца заряженные частицы движутся в магнитном поле по криволинейным траекториям. Характер движения частицы в магнитном поле зависит от угла между первоначальным направлением скорости движения частицы и направлением линий индукции магнитного поля.

     Если скорость частицы перпендикулярна линиям магнитной индуции, то частица движется по круговой траектории (рис. 23).

Радиус окружности траектории

; Рис. 23

период вращения частицы по окружности:,

где  m– масса частицы;  v– модуль скорости частицы;B – модуль вектора индукции магнитного поля;  q– модуль электрического заряда.

  Если заряженная частица движется вдоль линий магнитной индукции, сила Лоренца на нее не действует и характер ее движения не меняется.

   Если угол  α между первоначальным направлением скорости частицы и линиями магнитной индукции не равен ни 0°, ни 90°, ни 180°, траектория движения частицы представляет собой винтовую линию, накручивающуюся на линии магнитной индукции (рис. 24). Рис. 24

 

–тангенциальная составляющая скорости ;  – нормальная составляющая скорости; ; – шаг винтовой линии; .

3. При движении заряженной частицы в области пространства, занятой одновременно и электрическим и магнитным полями характер ее движения зависит от направления этих полей и величины сил, действующих с их стороны, а также от скорости частицы.

►Векторы E иB  взаимно-перпендикулярны и скорость v положительно заряженной частицы перпендикулярна силовым линиям этих полей. В этом случае на частицу действуют две силы: электрическая  и магнитная , которые могут быть как сонаправлены, так и противоположно направлены. Если силы противоположно направлены и равны по модулю (), то частица будет двигаться равномерно и прямолинейно, согласно первому закону Ньютона.

В случае  если силы не уравновешивают друг друга, то движение частицы будет сложным: она будет двигаться с ускорением вдоль линии напряженности электрического поля и совершать вращательное движение вокруг линии индукции магнитного поля.

Если силы, действующие на движущуюся заряженную частицу сонаправлены, то движение частицы также будет представлять суперпозицию двух движений: прямолинейного с ускорением вдоль линий вектора  и вращательного вокруг линий вектора .

Частица влетает в область пространства параллельно векторам E и B. В этом случае на нее действует только электрическая сила  (сила Лоренца , так как  и ). Под действием этой силы  частица движется прямолинейно с ускорением .

Закон Био–Савара. Теорема о циркуляции *) Магнитное поле постоянных токов различной конфигурации изучалось экспериментально французскими учеными Ж. Био и Ф. Саваром (1820 г.). Они пришли к выводу, что индукция магнитного поля токов, текущих по проводнику, определяется совместным действием всех отдельных участков проводника. Магнитное поле подчиняется принципу суперпозиции:

Если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником в отдельности.

Индукцию  В проводника с током можно представить как векторную сумму элементарных индукций ∆В создаваемых отдельными участками проводника. На опыте невозможно осуществить отдельный участок проводника с током, так как постоянные токи всегда замкнуты. Можно измерить только суммарную индукцию магнитного поля, создаваемого всеми элементами тока. Закон Био–Савара определяет вклад ∆В в магнитную индукцию В результирующего магнитного поля, создаваемый малым участком Δl проводника с током I.  Здесь r – расстояние от данного участка Δl до точки наблюдения, α – угол между направлением на точку наблюдения и направлением тока на данном участке, μ0 – магнитная постоянная. Направление вектора ∆В  определяется правилом буравчика: оно совпадает с направлением вращения рукоятки буравчика при его поступательном перемещении вдоль тока. Рис. 4.17.1 иллюстрирует закон Био–Савара на примере магнитного поля прямолинейного проводника с током. Если просуммировать (проинтегрировать) вклады в магнитное поле всех отдельных участков прямолинейного проводника с током, то получится формула для магнитной индукции поля прямого тока:  которая уже приводилась в § 1.16

Закон Био–Савара позволяет рассчитывать магнитные поля токов различных конфигураций. Нетрудно, например, выполнить расчет магнитного поля в центре кругового витка с током. Этот расчет приводит к формуле 

где R – радиус кругового проводника. Для определения направления вектора В также можно использовать правило буравчика, только теперь его рукоятку нужно вращать в направлении кругового тока, а поступательное перемещение буравчика укажет направление вектора магнитной индукции.

Расчеты магнитного поля токов часто упрощаются при учете симметрии в конфигурации токов, создающих поле. В этом случае расчеты можно выполнять с помощью теоремы о циркуляции вектора магнитной индукции, которая в теории магнитного поля токов играет ту же роль, что и теорема Гаусса в электростатике.

Поясним понятие циркуляции вектора B . Пусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый контур (не обязательно плоский) и указано положительное направление обхода контура. На каждом отдельном малом участке Δl этого контура можно определить касательную составляющую Bl вектора B в данном месте, то есть определить проекцию вектора B на направление касательной к данному участку контура (рис. 4.17.2). Рисунок 4.17.2.

Замкнутый контур (L) с заданным направлением обхода. Изображены токи I1, I2 и I3, создающие магнитное поле. Циркуляцией вектора B называют сумму произведений Bl Δl, взятую по всему контуру L: 

Некоторые токи, создающие магнитное поле, могут пронизывать выбранный контур L в то время, как другие токи могут находиться в стороне от контура.

Теорема о циркуляции утверждает, что циркуляция вектора B магнитного поля постоянных токов по любому контуру L всегда равна произведению магнитной постоянной μ0 на сумму всех токов, пронизывающих контур: 

В качестве примера на рис. 4.17.2 изображены несколько проводников с токами, создающими магнитное поле. Токи I2 и I3 пронизывают контур L в противоположных направлениях, им должны быть приписаны разные знаки – положительными считаются токи, которые связаны с выбранным направлением обхода контура правилом правого винта (буравчика). Следовательно, I3 > 0, а I2 < 0. Ток I1 не пронизывает контур L.Теорема о циркуляции в данном примере выражается соотношением: 

Теорема о циркуляции в общем виде следует из закона Био–Савара и принципа суперпозиции.

Простейшим примером применения теоремы о циркуляции является определение магнитной индукции поля прямолинейного проводника с током. Учитывая симметрию в данной задаче, контур L целесообразно выбрать в виде окружности некоторого радиуса R, лежащей в перпендикулярной проводнику плоскости. Центр окружности находится в некоторой точке проводника. В силу симметрии вектор В  направлен по касательной (Bl =B ), а его модуль одинаков во всех точках окружности. Применение теоремы о циркуляции приводит к соотношению:  откуда следует формула для модуля магнитной индукции поля прямолинейного проводника с током, приведенная ранее. Этот пример показывает, что теорема о циркуляции вектора магнитной индукции B может быть использована для расчета магнитных полей, создаваемых симметричным распределением токов, когда из соображений симметрии можно «угадать» общую структуру поля.

Имеется немало практически важных примеров расчета магнитных полей с помощью теоремы о циркуляции. Одним из таких примеров является задача вычисления поля тороидальной катушки (рис. 4.17.3). Рисунок 4.17.3.

Применение теоремы о циркуляции к тороидальной катушке.Предполагается, что катушка плотно, то есть виток к витку, намотана на немагнитный тороидальный сердечник. В такой катушке линии магнитной индукции замыкаются внутри катушки и представляют собой концентрические окружности. Они направлены так, что глядя вдоль них, мы увидели бы ток в витках, циркулирующим по часовой стрелке. Одна из линий индукции некоторого радиуса r1 ≤ r < r2 изображена на рис. 4.17.3. Применим теорему о циркуляции к контуру L в виде окружности, совпадающей с изображенной на рис. 4.17.3 линией индукции магнитного поля. Из соображений симметрии ясно, что модуль вектора B одинаков вдоль всей этой линии. По теореме о циркуляции можно записать: B ∙ 2πr = μ0IN, где N – полное число витков, а I – ток, текущий по виткам катушки. Следовательно, 

Таким образом, модуль вектора магнитной индукции в тороидальной катушке зависит от радиуса r. Если сердечник катушки тонкий, то есть r2 – r1 << r, то магнитное поле внутри катушки практически однородно. Величина n = N / 2πr представляет собой число витков на единицу длины катушки. В этом случае B = μ0In.

Вэто выражение не входит радиус тора, поэтому оно справедливо и в предельном случае r→ ∞. Но в пределе каждую часть тороидальной катушки можно рассматривать как длинную прямолинейную катушку. Такие катушки называют соленоидами. Вдали от торцов соленоида модуль магнитной индукции выражается тем же соотношением, что и в случае тороидальной катушки.На рис. 4.17.4 изображено магнитное поле катушки конечной длины. Следует обратить внимание на то, что в центральной части катушки магнитное поле практически однородно и значительно сильнее, чем вне катушки. На это указывает густота линий магнитной индукции. В предельном случае бесконечно длинного соленоида однородное магнитное поле целиком сосредоточено внутри соленоида. Рисунок 4.17.4.

Магнитное поле катушки конечной длины. В центре соленоида магнитное поле практически однородно и значительно превышает по модулю поле вне катушки.

В случае бесконечно длинного соленоида выражение для модуля магнитной индукции можно получить непосредственно с помощью теоремы о циркуляции, применив ее к прямоугольному контуру, показанному на рис. 4.17.5. Рисунок 4.17.5. Применение теоремы о циркуляции к расчету магнитного поля бесконечно длинного соленоидаВектор магнитной индукции имеет отличную от нуля проекцию на направление обхода контура abcd только на стороне ab. Следовательно, циркуляция вектора B по контуру равна Bl, где l – длина стороны ab. Число витков соленоида, пронизывающих контур abcd, равно n · l, где n – число витков на единицу длины соленоида, а полный ток, пронизывающий контур, равен Inl. Согласно теореме о циркуляции, Bl = μ0Inl откуда B = μ0In

Это выражение совпадает с полученной ранее формулой для магнитного поля тонкой тороидальной катушки.В предыдущем параграфе было выяснено, что действие магнитного поля на плоский контур с током определяется магнитным моментом контура pm, равным произведению силы тока I в контуре на площадь контура S:pm=IS (см. формулу (118.1)). Единицей магнитного момента является ампер-метр в квадрате (А•м2). Чтобы дать представление об этой единице, укажем, что при силе тока 1 А магнитным моментом, равным 1 А•м2, обладает круговой контур радиуса 0,564 м (p•0,5642=1) либо квадратный контур со стороной квадрата, равной 1 м. При силе тока 10 А магнитным моментом 1 А•м2 обладает круговой контур радиуса 0,178 м (p•0,1782=0,1) и т. д. Электрон, движущийся с большой скоростью по круговой орбите, эквивалентен круговому току, сила которого равна произведению заряда электрона е на частоту n вращения электрона по орбите: I=en. Если радиус орбиты равен r, а скорость электрона — v, то n=vl2pr и, следовательно, I=ev/2pr. Магнитный момент, соответствующий этому току, Магнитный момент является векторной величиной, направленной по нормали к контуру. Из двух возможных направлений нормали выбирается то, которое связано с направлением тока в контуре правилом правого винта [{рис. 211). Вращение винта с правой нарезкой в направлении, совпадающем с направлением тока в контуре, вызывает продольное перемещение винта в направлении n. Выбранная таким образом нормаль называется положительной. Направление вектора pm принимается совпадающим с направлением положительной нормали n. Теперь мы можем уточнить определение направления магнитной индукции В. За направление магнитной индукции В принимается направление, в котором устанавливается под действием поля положительная нормаль к контуру с током, т. е. направление, в котором устанавливается вектор pm. Единица магнитной индукции в СИ называется тесла (Тл) в честь сербского ученого Николы Теслы (1856—1943). Один тесла равен магнитной индукции однородного магнитного поля, в котором на плоский контур с током, имеющий магнитный момент один ампер-метр в квадрате, действует максимальный вращающий момент, равный одному ньютон-метру. Из формулы (118.2) следует, что

4 Гипотеза Планка. Квантовое объяснение законов теплового излучения. Корпускулярно-волновой дуализм света.Внешний фотоэффект. Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. Определение постоянной Планка.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]