Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Общая Геология 2

.pdf
Скачиваний:
65
Добавлен:
13.02.2015
Размер:
26.13 Mб
Скачать

северном полушарии +19°С, чем в южном - +16°С. На глубинах примерно в 4 км Т составляет от 0° до +1°С, а в придонном слое, мощностью в 200 м до -1°С.

Рис. 14.1.1. Изменение температур (°С) по вертикали в трех океанских бассейнах

(по Dietrich, 1963)

Рис. 14.1.2. Постоянный термоклин. В верхнем перемешанном слое толщиной несколько сотен метров может развиваться сезонный термоклин ( по B.W.Pipkin et al,1977)

Соленость Мирового океана - это общее количество растворенного вещества, в основном, NaCl. Соленость океанов в среднем 34,69г/кг или 34,69‰ промилле ( частей на тысячу). 75% всех вод Мирового океана имеют соленость от 34,5 до 35,0‰, но распределяется она неравномерно и зависит от количества выпадающих осадков, испарения, близости устьев крупных рек, таяния льдов и т.д (рис. 14.1.3). В Красном море соленость равняется 41‰. Повышенной соленостью до 39‰, характеризуется Средиземное море. На дне Красного моря, где в современных рифтах выходят нагретые рассолы, соленость достигает 310‰. Очень высокой соленостью характеризуются лагуны и заливы, отшнурованные от моря. В то же время моря, в которые впадает большое количество рек, обладают низкой соленостью, особенно вблизи устьев рек. Так, в Каспийском море средняя соленость составляет 12-15‰, а в северной части 3-5‰, что обусловлено с притоком пресных волжских вод. В Черном море соленость больше - 17-18‰, зато в Балтийском море соленость воды в поверхностном слое не превышает 3-6‰.

Плотность вод Мирового океана зависит от температуры, солености и давления. Плотность воды возрастает с глубиной, что определяет стратификацию водной толщи.

Рис. 14.1.3. Изменение солености () по вертикали в трех океанских бассейнах ( по

G.Dietrich, 1963)

Известно, что при Т =+20°С плотность пресной воды составляет 1,0 г/см3, а морской воды с соленостью в 35‰ - 1,025 г/см3. При Т=+2°С, плотность увеличивается до 1,028 г/см3, а на глубине 5000 м - 1,050 г/см3. На увеличение плотности влияет повышение солености, понижение температуры и возрастание давления. Увеличение плотности воды приводит к ее погружению, что переводит обогащенные кислородом поверхностные воды на более низкий уровень. В Атлантическом океане наименьшая плотность воды наблюдается в районе экватора, а наибольшая - на широтах в 60°. Самая высокая плотность океанской воды отмечена вокруг Антарктиды в связи с формированием ледяных полей.

Давление в океанских водах возрастает на 1 атм. на 10 м глубины. Поэтому в наиболее глубоководных районах океанов давление увеличивается до огромных величин в

800-1100 атм.

Химический и газовый состав морской воды. В океанской воде содержится практически все химические элементы, но только ионы Na и Cl играют решающую роль

(рис. 14.1.4).

Рис. 14.1.4. Состав океанской воды на 1 кг (1000 г). Растворенные ионы даны в граммах

Преобладают хлориды (89,1%), затем сульфаты (10,1%) и совсем ничтожную долю составляют карбонаты (0,56%). Соли, находящиеся в растворе, диссоциируют на анионы и катионы

Океанская вода по своему составу отвечает продуктам эмиссии кислых газов вулканов - гидрохлорноватая, серная, угольная кислоты и выщелачивания силикатных пород ( МеSi аAlвOс), где Ме - Na, K, Mg,Ca. Остальное - это нерастворимые окислы Si и Al, т.е. глинистые минералы.

В течение фанерозоя, т.е. за примерно 600 млн. лет состав воды и ее соленость практически не менялись. Это возможно только в том случае, если приток солей равняется

их удалению из воды. СаСО3 связывается в известковых скелетах организмов, Si - в опалиновых скелетах, Ме - в новообразованных минералах, S - в сульфидах тяжелых металлов в анаэробных условиях и т.д. В отличие от океанской воды, речная вода - это раствор бикарбоната кальция и кремнистой кислоты.

Газы, как и соли, растворены в океанской воде. Главными являются О и СО2. Кислород поступает в воду прежде всего из атмосферы, а также при фотосинтезе

растений (фитопланктона). Растворимость кислорода в воде уменьшается с повышением температуры, чем объясняется его низкое содержание в приэкваториальной зоне. Зато в высоких широтах наблюдается обогащение кислородом холодных вод. Взаимный обмен кислородом между атмосферой и океанскими водами происходит в связи со сменой сезонов, когда летом океан прогревается, избыток кислорода выделяется в атмосферу, а зимой, при его охлаждении, он поглощается из атмосферы и растворяется в воде. Глубоководные слои в океанах обогащаются холодными, тяжелыми, насыщенными кислородом водами, поступающими из высоких широт.

Углекислый газ в океанской воде находится либо в свободном состоянии, либо химически связан в карбонатах и бикарбонатах. Содержание СО2 в воде составляет около 45 см3/л, причем 50% его приходится на свободный СО2, а другие 50% находятся в связанном состоянии. Растворимость СО2 также как и О, уменьшается с повышением Т. Поэтому в низких широтах, где растворимость СО2 в воде уменьшается, углекислота выделяется в атмосферу, в высоких широтах, наоборот, поглощается. Максимальное содержание СО2 наблюдается в холодных придонных водах, которые растворяют известковые раковины планктонных организмов, не достигающих по этой причине океанского дна. Закономерности содержания СО2 в океанских водах влияет на образование и сохранность карбонатных осадков.

Сероводород присутствует в морской воде только в тех водоемах, где затруднен обмен воды с открытым океаном, например, в Черном море.

Рассмотрение основных параметров океанской и морской воды показывает насколько это сложная система, все составляющие которой тесно взаимодействуют между собой, влияя друг на друга. Пожалуй, наиболее важный вывод заключается в установлении факта стратификации, т.е. слоистости океанских вод.

Поэтому вертикальный разрез океанских вод характеризуется неоднородностью, наличием слоев с разной соленостью, температурой и плотностью, слабо перемешивающихся между собой. Если температурный скачок называется термоклином, то резкое изменение солености – галоклином, а изменение плотности – пикноклином.

Органические частицы столь широко распространенные во взвеси верхнего водного слоя, благодаря своему объемному весу, близкому к таковому океанской воды, задерживаются в термоклине и служат пищей для зоопланктона и бактерий. С другой стороны, более глубинные и холодные воды, богатые фосфатами, не могут пробитьься в верхние слои водной массы океана, т.к. для них препятствием служит хорошо перемешанная и теплая вода термоклина. Перечисленные выше свойства морской воды меняются от слоя к слою очень резко, поэтому водные слои могут как бы скользить друг по другу, а вода при этом перемещается на большие расстояния.

Движение океанских вод.

Вода океанов и морей находится в непрерывном движении. Эта циркуляция в поверхностных и глубинных зонах носит различный характер и определяется разными факторами.

Поверхностная циркуляция зависит в основном от ветров нижней атмосферы, влияющих на перемещение воды в самом верхнем слое. Характер циркуляции обусловлен перемещением атмосферы и вращением Земли. Поэтому в средних и низких широтах Северного полушария ветры образуют круговорот воды по часовой стрелке, а в южном - против. Это главные океанские антициклонические круговые течения (рис.14.2.1), которые не меняются от временного изменения направления ветра, т.к. обладают огромной инерцией. Только в северной части Индийского океана течения меняются из-за смены летнего и зимнего муссонов. Наиболее мощное течение - это циркумполярное, окружающее Антарктиду кольцом и перемещающееся с запада на восток с расходом воды в 200 × 106 м3/ с, тогда как у других течений эта величина составляет (15-50) × 106 м3/с , кроме Гольфстрима 100 × 106 м3/с. Круговые течения в океанах особенно сильны и узки по ширине в западной половине круговорота и более расплывчаты в восточной. Они служат переносчиком тепла. Нагреваясь около экватора в северном полушарии, вода переносит тепло далеко на восток, пример тому - Гольфстрим..

Все круговые течения с их асимметрией обусловлены вращением Земли с запада на восток. В 1835 г. Жак де Кориолис установил влияние вращения Земли на движущуюся жидкость, которое в его честь было названо ускорением Кориолиса (рис. 14.2.2).

Суть этого влияния заключается в том, что направление вращения Земли в Северном и Южном полушарии имеет различную ориентацию, если смотреть с Северного и Южного полюсов соответственно. С Северного - против часовой стрелки, с Южного - по часовой. Неподвижное тело на экваторе вращается со скоростью 1670 км/час, при длине окружности в 40000 км. По направлениям к полюсам скорость вращения уменьшается и на полюсах равна 0. Поэтому, чтобы выполнить закон сохранения количества движения,

необходимо, чтобы частица, движущаяся от экватора к полюсу, смещалась к востоку по сравнению с неподвижными частицами, а от полюса к экватору к западу, т. е. они отклоняются вправо по отношению к направлению движения. В Южном полушарии их движение будет, естественно, противоположным. Несмотря на то, что ускорение Кориолиса мало - 1,5 10-4 V sin ϕ см/с2, где V - скорость, а ϕ - широта, его влияние на воды океана и атмосферу очень велико, т.к. ускорение Кориолиса действует в горизонтальной плоскости. Поэтому ускорение Кориолиса играет важную роль в движении океанских вод.

. 14.2.1. Главные поверхностные течения Мирового океана

Так как вода в океанах стратифицирована, то даже небольшие различия в ее плотности приводят воду в движение и сразу же она подвергается влиянию ускорения Кориолиса. Течения, где градиент давления, т.е. перепад плотностей, соответствует ускорению Кориолиса, называют геострофическим (плотностными).

Рис. 14.2.2. Эффект ускорения Кориолиса: 1 – если вода или воздух перемещаются от экватора к полюсам, то они двигаются быстрее, чем вращающаяся поверхность Земли под ними и отклоняются к востоку (вправо в северном полушарии, влево – в южном); 2 – если вода или воздух перемещаются от полюсов к экватору, то они двигаются медленнее, чем вращающаяся поверхность Земли и отклоняются к западу ( вправо в северном полушарии, влево – в южном)

Обычно они направлены вдоль зон воды с разной плотностью. В результате нагона воды из-за дующих ветров и течений, уклон поверхности воды может достигать 1 м на 100 км. Такое явление известно в поперечном сечении Гольфстрима.

Течения, вызванные деятельностью ветра, уменьшают свою скорость с глубиной ввиду трения слоев в водной толще. На поверхности океана вода не движется точно в направлении ветра, а с действием ускорения Кориолиса, течение будет направлено под углом в 45° к направлению ветра, причем, чем глубже расположен слой воды, тем отклонение от направления ветра будет больше. Подобная закономерность была установлена в1902 г. В.В.Экманом и получила наименование спирали Экмана.

Апвеллинг представляет собой очень важное явление и заключается в подъеме воды в океанах с уровня термоклина или более глубоких слоев воды в силу разных причин.. Это и ветер, сгоняющий теплую воду с поверхности; и действие ускорения Кориолиса; и конфигурация береговой линии; и разница в плотности воды (рис.14.2.3). Значение процесса апвеллинга заключается в выносе к поверхности вод относительно богатых разнообразными питательными веществами, обогащая поверхностные слои компонентами, увеличивающими биопродуктивность. Поэтому апвеллинг, помимо других факторов, контролирует тип биогенных осадков: карбонатных, кремнистых, фосфатных. С апвеллингом связана низкая температура воды у побережий Калифорнии и Южной Америки, Северо-Западной и Юго-Западной Африки. В этих случаях важную роль играют пассаты, которые дуя с востока на запад постоянно сдувают нагревающийся поверхностный слой воды, а на смену ему поднимаются холодные глубинные воды.

Рис. 14.2.3. Процессы апвеллинга (описание в тексте). Точка в кружке – ветер, дующий в сторону читателя; косой крест в кружке – ветер, дующий от читателя. А – апвеллинг в открытом океане, обусловленный действием силы Кориолиса; Б – апвеллинг, вызванный ветром; В – перенос вод под действием силы Кориолиса; Г – апвеллинг, вызываемый конфигурацией берега; Д – апвеллинг, обусловленный разницей в плотности вод (по

B.W.Pipkin et al, 1977)

Глубинная циркуляция отличается от поверхностной тем, что ее движущей силой является разница в плотности вод, обусловленная их охлаждением в высоких широтах, опусканием в придонные глубоководные области, а на смену этим холодным водам из низких широт поступают более нагретые воды. Так осуществляется глубинный круговорот, а придонные течения со скоростями 5-1- см/с были открыты в 1960 г. Основными поставщиками холодных придонных вод являются районы Северной Атлантики и, особенно, Антарктиды (рис. 14.2.4). Холодные, плотные воды, сформировавшиеся вокруг Антарктиды составляют почти 60% всех вод Мирового океана,

достигая примерно 45° с.ш. в Тихом и Атлантическом океанах. Эти воды богаты кислородом и обладают температурой +2 - +3°С. В их образовании большую роль играют морские льды, с соленостью не более 30. Следовательно, подледная вода становится солонее и плотнее, опускается на дно и движется в низкие широты. Т.к. придонные течения следуют вдоль линий равной глубины - изобатам, их называют контурными

течениями и они обычно двигаются вдоль рельефа дна, а не перемещаются поперек придонных поднятий.

Описанные выше течения, вызванные разными причинами, местами движутся навстречу друг другу и тогда возникают зоны конвергенции. Когда же течения как бы расходятся в разные стороны, образуются зоны дивергенции, которые благодаря подъему холодных, плотных вод, обогащенных кислородом, в свою очередь, богаты биогенным веществом, что определяет характер осадконакопления в этих зонах. Хорошо известен экваториальный апвеллинг, вдоль которого наблюдается высокая биопродуктивность.

Приливы и отливы. В двойной системе Земля-Луна возникают приливные силы. На Землю воздействует Луна и Солнце. Но поскольку Луна ближе к Земле, несмотря на меньшую массу ее воздействие сильнее. Приливы достигают наибольшей величины в новолуние и полнолуние, т.е. когда Земля, Луна и Солнце находятся на одной прямой (рис. 14.2.5). Это положение называется сизигеем (“сизигма” - сопряжение, греч.) и при нем воздействие Солнца и Луны на Землю суммируются и возрастают. В тоже время,

Рис. 14.2.4. Распределение течений воды в продольном разрезе Атлантического океана. Холодные Арктические и Антарктические воды располагаются в глубоких частях океана.

когда Луна находится в первой или последней четверти, т.е. линии Земля-Луна и ЗемляСолнце образуют прямой угол, приливы минимальны.

Высота приливов в открытом океане крайне мала, около 1 м, но эти движения охватывают всю водную толщу. Вблизи побережий, в зоне мелководного шельфа или в узких заливах, эстуарий рек высота приливов увеличивается, достигая, 18 м на СВ Канады или в Пенжинской губе (эстуарии) северной части Охотского моря 13 м.

Движение волн. Океанские и морские волны характеризуются круговыми движениями частиц воды, причем верхняя часть круга движется по направлению движения волны, а нижняя - в противоположную (рис. 14.2.6). Периодом волны называется время, за которое волна проходит расстояние, равное длине волны, ее фронтом

- линия, проходящая вдоль гребня волны. В открытом океане при нормальном ветре высота волн бывает от 0,3 до 5 м, а при сильном шторме до 15 м. В северной части Тихого океана в 1933 г. была измерена высота волны в 34 м.

Рис. 14.2.5. Образование приливов в океанах на Земле. I. При новой и полной Луне, солнечные и лунные приливы суммируются. 1 – Солнце, 2 – Земля, 3 – новая Луна, 4 – полная Луна, 5 – солнечный прилив, 6 – лунный прилив, 7 – первая четверть Луны, 8 – третья четверть Луны. II. Положение приливных выступов при отсутствии (ввуерху) и наличии (внизу) трения

Рис. 14.2.6. При движении волны частицы воды совершают круговые движения, оставаясь на месте. При накатывании волны на пляж, когда глубина становится меньше ½ длины волны, волна забурунивается и увеличивает свою высоту

Во время цунами - образования волн вследствие землетрясения, высота волны у берега может достигать 30-40 м, а в 1971 г. у островов Рюкю в Японии, высота волны цунами достигла фантастической величины в 85 м! Большинство океанских волн имеет длину в 50-450 м при скорости от 25 до 90 км/час на глубокой воде.

Круговые движения частиц воды в волне быстро уменьшаются с глубиной и постепенно сходят на нет на уровне, соответствующем половине длины волны. Таким образом, волновыми движениями затрагивается только самая поверхностная часть водного слоя, хотя существуют плохо изученные внутренние волны в термоклине.