Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
27
Добавлен:
13.02.2015
Размер:
2.68 Mб
Скачать

4.4.6 Протокол преобразования адресов ARP Семенов Ю.А. (ГНЦ ИТЭФ), book.itep.ru

Любое устройство, подключенное к локальной сети (Ethernet, FDDI и т.д.), имеет уникальный физический сетевой адрес, заданный аппаратным образом. 6-байтовый Ethernet-адрес выбирает изготовитель сетевого интерфейсного оборудования из выделенного для него по лицензии адресного пространства. Если у машины меняется сетевой адаптер, то меняется и ее Ethernet-адрес.

4-байтовый IP-адрес задает менеджер сети с учетом положения машины в сети Интернет. Если машина перемещается в другую часть сети Интернет, то ее IP-адрес должен быть изменен. Преобразование IP-адресов в сетевые выполняется с помощью arp-таблицы. Каждая машина сети имеет отдельную ARP-таблицу для каждого своего сетевого адаптера. Не трудно видеть, что существует проблема отображения физического адреса (6 байт для Ethernet) в пространство сетевых IP-адресов (4 байта) и наоборот.

Протокол ARP (address resolution protocol, RFC-826) решает именно эту проблему - преобразует ARP- в Ethernet-адреса.

Рассмотрим процедуру преобразования адресов при отправлении сообщения. Пусть прикладная программа одной ЭВМ отправляет сообщение другой. Прикладной программе IP-адрес места назначения обычно известен. Для определения Ethernet-адреса просматривается ARP-таблица. Если для требуемого IP-адреса в ней присутствует Ethernet-адрес, то формируется и посылается соответствующий пакет. Если же с помощью ARP-таблицы не удается преобразовать адрес, то выполняется следующее:

1. Всем машинам в сети посылается пакет с ARP-запросом (с широковещательным Ethernet-адресом места назначения). 2. Исходящий IP-пакет ставится в очередь.

Каждая машина, принявшая ARP-запрос, в своем ARP-модуле сравнивает собственный IP-адрес с IP-адресом в запросе. Если IP-адрес совпал, то прямо по Ethernet-адресу отправителя запроса посылается ответ, содержащий как IP-адрес ответившей машины, так и ее Ethernet-адрес. После получения ответа на свой ARP-запрос машина имеет требуемую информацию о соответствии IP и Ethernet-адресов, формирует соответствующий элемент ARP-таблицы и отправляет IP-пакет, ранее поставленный в очередь. Если же в сети нет машины с искомым IP-адресом, то ARP-ответа не будет и не будет записи в ARP-таблицу. Протокол IP будет уничтожать IP-пакеты, предназначенные для отправки по этому адресу.

Протоколы верхнего уровня не могут отличить случай повреждения в среде ethernet от случая отсутствия машины с искомым IP-адресом. Во многих реализациях в случае, если IP-адрес не принадлежит локальной сети, внешний порт сети (gateway) или маршрутизатор откликается, выдавая свой физический адрес (режим прокси-ARP).

Функционально, ARP делится на две части. Одна - определяет физический адрес при посылке пакета, другая отвечает на запросы других машин. ARP-таблицы имеют динамический характер, каждая запись в ней "живет" определенное время после чего удаляется. Менеджер сети может осуществить запись в ARP-таблицу, которая там будет храниться "вечно". ARP-пакеты вкладываются непосредственно в ethernet-кадры. Формат arp-пакета показан на рис. 4.4.6.1.

Рис. 4.4.6.1. Формат пакета ARP

HA-Len - длина аппаратного адреса; PA-Len лина протокольного адреса (длина в байтах, например, для IP-адреса PA-Len=4). Тип оборудования - это тип интерфейса, для которого отправитель ищет адрес; код содержит 1 для Ethernet. Ниже представлена таблица 4.4.6.1 кодов оборудования.

Таблица 4.4.6.1. Коды оборудования

Код типа оборудования

Описание

1

Ethernet (10 Мбит/с)

2

Экспериментальный Ethernet (3 Мбит/с)

3

Радиолюбительская связь через X.25

4

Proteon ProNET маркерная кольцевая сеть (Token Ring)

5

Chaos

6

Сети IEEE 802

7

ARCNET

Таблица 4.4.6.2. Коды протоколов (для IP это 0800H).

Код типа протокола

Описание

Десятичное значение

Hex

512

0200

XEROX PUP

513

0201

PUP трансляция адреса

1536

0600

XEROX NS IDP

2048

0800

DOD Internet протокол (IP)

2049

0801

X.75 Internet

2050

0802

NBS Internet

2051

0803

ECMA Internet

2052

0804

Chaosnet

2053

0805

X.25 уровень 3

2054

0806

Протокол трансляции адреса (ARP)

2055

0807

XNS совместимость

2560

0A00

Xerox IEEE-802.3 PUP

4096

1000

Bercley Trailer

21000

5208

BBN Simnet

24577

6001

DEC MOP Dump/Load

24578

6002

DEC MOP удаленный терминал

24579

6003

DEC DECnet фаза IV

24580

6004

DEC LAT

24582

6005

DEC

24583

6006

DEC

32773

8005

HP Probe

32784

8010

Excelan

32821

8035

Реверсивный протокол ARP (RARP)

32824

8038

DEC LANbridge

32923

8098

Appletalk

33100

814C

SNMP

Поле код операции определяет, является ли данный пакет ARP-запросом (код = 1), ARP-откликом (2), RARP-запросом (3), или RARP-откликом (4). Это поле необходимо, как поле тип кадра в Ethernet пакетах, они идентичны для ARP-запроса и отклика.

ARP-таблицы строятся согласно документу RFC-1213 и для каждого IP-адреса содержит четыре кода:

ifindex

Физический порт (интерфейс), соответствующий данному адресу;

Физический адрес

MAC-адрес, например Ethernet-адрес;

IP-адрес

IP-адрес, соответствующий физическому адресу;

тип адресного соответствия

это поле может принимать 4 значения: 1 - вариант не стандартный и не подходит ни к одному из описанных ниже типов; 2 - данная запись уже не соответствует действительности; 3 - постоянная привязка; 4 - динамическая привязка;

В SUN и некоторых других ЭВМ имеется программа arp, которая позволяет отобразить ARP-таблицу на экране. С флагом -a команда отображает всю таблицу, флаг позволяет стереть запись, а -s - служит для внесения записей в таблицу (последние два флага доступны для операторов с системными привилегиями). Команда ARP без флагов с адресом или именем ЭВМ выдаст соответствующую строку таблицы:

arp 192.148.166.129 Name: semenov.itep.ru Address: 192.148.166.129 (IP-адрес моей персональной ЭВМ) Aliases: yas А команда arp nb выдаст запись nb (193.124.224.60) at 0:80:ad:2:24:b7 (запись для NetBlazer ИТЭФ)

ARP запросы могут решать и другие задачи. Так при загрузке сетевого обеспечения ЭВМ такой запрос может выяснить, а не присвоен ли идентичный IP-адрес какому-то еще объекту в сети. При смене физического интерфейса такой запрос может инициировать смену записи в ARP-таблице.

4.4.7 Прокси-ARP Семенов Ю.А. (ГНЦ ИТЭФ), book.itep.ru

Еще одна разновидность протокола ARP служит для того, чтобы один и тот же сетевой префикс адреса можно было использовать для двух сетей. Этот протокол называется смешанным протоколом ARP (proxy). Предположим, мы имеем сеть из четырех ЭВМ (1-4; рис. 4.4.7.1), которую бы мы хотели соединить с другой сетью из четырех ЭВМ (5-8), причем так, чтобы машины взаимодействовали друг с другом так, будто они принадлежат одной сети. Решить эту проблему можно, соединив эти сети через маршрутизатор M, работающий в соответствии со смешанным протоколом ARP (функционально это IP-мост). Маршрутизатор знает, какая из машин принадлежит какой физической сети. Он перехватывает широковещательные ARP-запросы из сети 1, относящиеся к сети 2, и наоборот. Во всех случаях в качестве физического адреса маршрутизатор возвращает свой адрес. В дальнейшем, получая дейтограммы, он маршрутизирует их на физические адреса по их IP-адресам.

Рис. 4.4.7.1. Использование протокола proxy ARP

Не трудно видеть, что в смешанном протоколе ARP нескольким IP-адресам ставится в соответствие один и тот же физический адрес. Поэтому системы, где предусмотрен контроль за соответствием физических и IP-адресов, не могут работать со смешанным протоколом ARP. Главным преимуществом этого протокола является то, что он позволяет путем добавления одного маршрутизатора (Gateway) подключить к Интернет еще одну сеть, не изменяя таблиц маршрутизации в других узлах. Этот протокол удобен для сети, где есть ЭВМ, не способная работать с субсетями. Протокол используется при построении сетей Интранет.

4.4.8 Протокол обратного адресного преобразования RARP Семенов Ю.А. (ГНЦ ИТЭФ), book.itep.ru

Обычно IP-адреса хранятся на диске, откуда они считываются при загрузке системы. Проблема возникает тогда, когда необходимо инициализировать рабочую станцию, не имеющую диска. Бездисковые системы часто используют операции типа TFTP для переноса из сервера в память образа операционной системы, а это нельзя сделать, не зная IP-адресов сервера и ЭВМ-клиента. Записывать эти адреса в ПЗУ не представляется целесообразным, так как их значения зависят от точки подключения ЭВМ и могут меняться. Для решения данной проблемы был разработан протокол обратной трансляции адресов (RARP verse Address Resolution Protocol, RFC-0903, смотри также ниже описание протокола BOOTP). Форматы сообщений RARP сходны с ARP (см. рис. 4.4.8.1), хотя сами протоколы принципиально различны. Протокол RARP предполагает наличие специального сервера, обслуживающего RARP-запросы и хранящего базу данных о соответствии аппаратных адресов протокольным. Этот протокол работает с любой транспортной средой, в случае же кадра Ethernet в поле тип будет записан код 803516 (смотри таблицу 4.4.6.2).

Рис. 4.4.8.1. Формат RARP-сообщения

Здесь обозначения те же, что и в описании ARP-формата. Значение n определяется числом, записанным в поле HA-Len, а m - числом из поля PA-Len. Для Internet PA-Len=4 и тип протокола=2048, а для Ethernet равно HA-Len=6 и тип оборудования=1. В RARP используется два кода операции. Код операции=3 используется для RARP-запросов, а код операции=4 - для RARP-откликов. В первом случае поле протокольный адрес отправителя и протокольный адрес адресата не определены. Обычно локальная сеть имеет несколько RARP-серверов, что позволяет загрузиться бездисковым машинам, даже если какой-то из серверов выключен или не исправен.

4.4.9 Протокол IGMP Семенов Ю.А. (ГНЦ ИТЭФ), book.itep.ru

Передача мультимедийных данных по сетям Интернет является одним из наиболее важных направлений. Этот вид информации передается обычно в режиме без установления соединения (протокол UDP-RTP). Наиболее типичной схемой в этом случае является наличие одного передатчика и большого числа приемников. Эта схема реализуется с использованием мультикастинг-адресации. Мультикастинг-адресация может осуществляться на IP- и MAC-уровнях. В Ethernet для этих целей зарезервирован блок адресов в диапазоне от 01:00:5E:00:00:00 до 01:00:5E:7F:FF:FF. Первый байт адреса, равный 01, указывает на то, что адрес является мультикастным. Данная схема резервирования адресного пространства позволяет использовать 23 бита Ethernet-адреса для идентификации группы рассылки при IP-мультикастинге (см. рис. 4.4.9.1.).

Рис. 4.4.9.1. Соотношение мультикастинговых MAC- и IP-адресов

Область из 5 бит в IP-адресе, отмеченная *****, не используется при формировании Ethernet-адреса. Так как соотношение IP и MAC-адресов не является однозначным, драйверы должны обеспечивать обработку адресов с тем, чтобы интерфейсы получали только те кадры, которые действительно им предназначены. Для того чтобы информировать маршрутизатор о наличии участников мультикастинг-обмена в субсети, связанной с тем или иным интерфейсом, используется протокол IGMP.

Протокол IGMP (internet group management protocol, RFC-1112) используется для видеоконференций, передачи звуковых сообщений, а также группового исполнения команд различными ЭВМ. Этот протокол использует групповую адресацию (мультикастинг).

Групповая форма адресации нужна тогда, когда какое-то сообщение или последовательность сообщений необходимо послать нескольким (но не всем) адресатам одновременно. При этой форме адресации ЭВМ имеет возможность выбрать, хочет ли она участвовать в этой процедуре. Когда группа ЭВМ хочет взаимодействовать друг с другом, используется один групповой (мультикастинг) адрес. Групповая адресация может рассматриваться как обобщение обычной системы адресов, а традиционный IP-адрес - частный случай группового обращения при числе ЭВМ, равном 1.

При групповой адресации один и тот же пакет может быть доставлен заданной группе ЭВМ. Членство в этой группе может динамично меняться со временем. Любая ЭВМ может войти в группу и выйти из группы в любое время по своей инициативе. В то же время ЭВМ может быть членом большого числа таких групп. ЭВМ может посылать пакеты членам группы, не являясь им сама. Каждая группа имеет свой адрес класса D (рис. 4.4.9.2, см. также рис. 4.4.9.1).

Рис. 4.4.9.2. Формат группового адреса

Адрес 224.0.0.1 предназначен для обращения ко всем группам (все узлы и серверы, вовлеченные в данный момент в мультикастинг-обмен, например, участвующие в видеоконференции). ЭВМ может участвовать в мультикастинг-процессе на одном из следующих уровней:

Таблица 4.4.9.1. Коды мультикастинг-процессов

Уровень мультикастинг-процесса

Описание

0

ЭВМ не может ни посылать, ни принимать данные

1

ЭВМ может только посылать пакеты в процессе IP-мултикастинга

2

ЭВМ в режиме мультикастинга может передавать и принимать пакеты

Ряд мультикастинг-адресов зарезервировано строго для определенных целей.

Таблица 4.4.9.2. Зарезервированные мультикастинг-адреса

Мультикастинг адрес

Описание

224.0.0.0

Зарезервировано

224.0.0.1

Все системы данной субсети

224.0.0.2

Все маршрутизаторы данной субсети

224.0.0.4

Все DVMRP-маршрутизаторы

224.0.0.5-224.0.0.6

OSPFIGP (MOSPF)

224.0.0.9

Маршрутизаторы RIP2

224.0.0.10

IGRP маршрутизаторы

224.0.1.0

VMTP-группа менеджеров

224.0.1.1

NTP-network time protocol - сетевая службы времени

224.0.1.6

NSS - сервер имен

224.0.1.7

Audionews - audio news multicast (аудио служба новостей)

224.0.1.9

MTP (multicast transport protocol) - транспортный протокол мультикастинга

224.0.1.10

IETF-1-low-audio

224.0.1.11

IETF-1-audio

224.0.1.12

IETF-1-video

224.1.0.0-224.1.255.255

ST мультикастинг-группы

224.2.0.0-224.2.255.255

Вызовы при мультимедиа- конференциях

232.0.0.0-232.255.255.255

VMTP переходные группы

Для того чтобы участвовать в коллективных обменах в локальной сети ЭВМ должна быть снабжена программой, которая поддерживает этот режим. При этом сервер локальной сети (gateway) информируется о намерении использовать мультикастинг. Сервер передает эту информацию другим внешним серверам IP-сети. Следует иметь в виду, что мультикастинг также как и широковещательный режим, заметно загружает сеть. IGMP для передачи своих сообщений использует IP-дейтограммы (IGMP-пакеты инкапсулируются в них). Для подключения к группе сначала посылается IGMP-сообщение "всем ЭВМ" о включении в группу, при этом локальный мультикаст-сервер подготавливает маршрут. Локальный мультикаст-сервер время от времени проверяет ЭВМ и определяет, не покинули ли они группу (ЭВМ не подтверждает свое членство в группе). Все обмены между ЭВМ и мультикаст-сервером производятся в режиме ip-мультикастинга, те есть, любое сообщение адресуется всем ЭВМ группы. ЭВМ, не принадлежащая группе, IGMP-сообщений не получает, что сокращает загрузку сети. Формат сообщений в протоколе IGMP имеет вид, показанный ниже на рис. 4.4.9.3.

Рис. 4.4.9.3. Формат IGMP-сообщений

Поле версия определяет используемую версию протокола, поле тип=1 говорит о том, что это запрос, отправленный мультикастинг-маршрутизатором, тип=2 указывает, что этот отклик послан ЭВМ. ЭВМ использует групповой адрес, чтобы сообщить о своем подключении к группе. Контрольная сумма вычисляется по тому же алгоритму, что и для ICMP. IGMP-сообщения используются мультикастинг-маршрутизаторами для того, чтобы отслеживать членство в группе каждой из сетей, подключенных к нему. В группе может участвовать несколько активных процессов в одной и той же ЭВМ, но при этом посылается только один запрос для регистрации. Когда какой-то процесс покидает группу, ЭВМ не шлет сообщения об этом, даже в случае, когда это последний из процессов - членов группы на данной ЭВМ. Просто при очередном запросе ЭВМ не подтвердит членство в группе. Мультикастинг-маршрутизатор регулярно посылает запросы с требованием подтвердить участие в группе. ЭВМ посылает отклик- подтверждение для каждой из групп, если у нее есть хотя бы один процесс - член группы. На основе этих запросов-откликов мультикастинг-маршрутизатор составляет и поддерживает таблицу интерфейсов, которые имеют одну или более ЭВМ, входящих в мультикастинг-группы.

Протокол IGMP используется при организации мультикастинг-туннелей для передачи звуковой и видеоинформации. Для решения проблем мультимедиа в сетях Интернет используется идея MBONE.

По умолчанию мультикаст-дейтограммы имеют значение поля TTL=1, что ограничивает их распространение одной субсетью. Приложения могут увеличивать значение TTL. Первая дейтограмма, тем не менее, всегда имеет TTL=1. Если получение этой дейтограммы не подтверждается сервером, посылается вторая - с TTL=2 и т.д. Таким образом попутно измеряется и число шагов между клиентом и сервером. Для случая, когда число шагов не более 1, зарезервирован блок адресов 224.0.0.0 - 224.0.0.255. Маршрутизатор не обрабатывает пакеты с такими адресами вне зависимости от кода поля TTL.

При использовании мультикастинга MAC-переключатели переадресуют пакеты через все имеющиеся интерфейсы, что заметно ухудшает эффективность сети. Чтобы решить эту проблему компания CISCO разработала протокол CGMP (Cisco Group Management Protocol), который позволяет взаимодействовать маршрутизаторам и переключателям, что позволяет передавать мультикаст-пакеты только на те интерфейсы, где имеются активные члены группы.

4.4.9.1 Мультикастинг и MBONE Семенов Ю.А. (ГНЦ ИТЭФ), book.itep.ru

MBONE - это виртуальная сеть, базирующаяся на мультикастинг-протоколах, которые были одобрены IETF летом 1992 года. В основу легли разработки, выполненные в компании Ксерокс. Данный режим работы поддерживается не всеми маршрутизаторами. Сеть представляет собой систему Ethernet-сетей, объединенных друг с другом соединениями точка-точка, которые называются "туннелями". Конечными точками таких туннелей обычно являются машины класса рабочих станций, снабженные соответствующим программным обеспечением. Впервые мультикастинг-туннель был реализован в Стэнфордском университете в 1988 году.

IP-мультикастинг-пакеты инкапсулируются при передаче через туннели так, что они выглядят как обычные IP-уникаст-пакеты.

Мультикастинг-маршрутизатор при посылке пакета через туннель подготавливает IP-пакет с заголовком, который содержит адрес маршрутизатора-партнера на другом конце туннеля, при этом поле IP-протокола содержит код 4 (IP). Маршрутизатор-приемник извлекает вложенный мультикастинг-пакет и направляет далее, если это требуется.

MBONE требует пропускной способности магистральных каналов не ниже 500Kбит/с.

Каждый туннель имеет определенный порог для переменной времени жизни пакета (time-to-live - TTL). Согласно договоренности (IETF) широкополосная видео-информация передается с малыми начальными значениями TTL. Малые значения TTL не позволяет видео-пакетам загружать слишком большие участки сети. Мультикастинг-дейтограмма с TTL=0 может быть доступна только процессу, существующему в ЭВМ, породившей эту дейтограмму. По умолчанию мультикастинг-дейтограммы имеют TTL=1, такая дейтограмма не может покинуть пределов субсети, и только дейтограммы с TTL>1 могут переадресовываться маршрутизаторами. Следует помнить, что маршрутизатор не откликнется ICMP-сообщением "время истекло", когда TTL достигнет нуля, так как вообще дейтограммы с мультикастинг-адресами не вызывают ICMP-откликов. Увеличивая TTL, прикладной процесс может расширять "зону взаимодействия". Сначала дейтограмма может посылаться с TTL=1, если отклика не получено, c TTL=2 и так далее. Эта схема позволяет найти ближайший сервер (с точки зрения числа шагов до него). Для приложений, которые ограничивают свою активность в пределах одного шага, предусмотрен специальный интервал адресов 224.0.0.0 - 224.0.0.255. Мультикастинг-маршрутизатор не должен переадресовывать дейтограммы с такими адресами вне зависимости от значения TTL. Адрес 224.0.0.1 является адресом группы "все ЭВМ" и относится ко всем ЭВМ и маршрутизаторам, способным работать в режиме мультикастинга. Каждая ЭВМ автоматически включается в эту группу при инициализации интерфейса. О членстве в этой группе ЭВМ не сообщает.

Конфигурация системы в режиме мультикастинга производится автоматически. Для того чтобы изменить конфигурацию системы, или добавить еще один туннель используются специальные конфигурационные команды, которые записываются в /etc/mrouted.conf. Существует два типа таких команд:

phyint <local-addr> [disable] [metric <m>] [threshold <t>]

tunnel <local-addr> <remote-addr> [metric <m>] [threshold <t>]

Первая команда может отменить мультикастинг-маршрутизацию для конкретного физического интерфейса, идентифицируемого по его IP-адресу (<local-addr>), или заменить значение метрики или порога. Эта команда должна выдаваться до команды tunnel. Последняя команда может служить для установления туннеля между местным IP-адресом (<local-addr>) и удаленным IP-адресом (<remote-addr>). Значения метрики и порога по умолчанию равны 1.

Специфика мультикастинг-туннелей требует принципиально новых решений задачи маршрутизации, первой попыткой разрешить эту проблему был протокол DVMRP. Следует иметь в виду, что DVMRP может решить лишь часть задачи, хотя бы потому, что это внутренний протокол. Главной особенностью мультикастинг-маршрутизации является то, что нужно проложить маршруты от источника к совокупности адресатов, от которых пришли запросы участия в процессе. Режим мультикастинга поддерживается не всеми маршрутизаторами Интернет. Возможны конфликты при решении задачи маршрутизации, когда транзитный маршрутизатор не имеет "своих" участников группы (а должен выделить заметный ресурс каналов для удовлетворения внешних запросов).

Соседние файлы в папке semenov_yu_a_telekommunikacionnye_tehnologii