Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Inform

.pdf
Скачиваний:
11
Добавлен:
14.02.2015
Размер:
1.03 Mб
Скачать

11

фирмы и род деятельности. Для вашего друга непонятные цифры обретут определенность и превратятся из данных в информацию, которую он в дальнейшем может использовать.

При работе с информацией всегда имеется ее источник и потребитель (получатель). Пути и процессы, обеспечивающие передачу сообщений от источника информации к ее получателю, называются информационными коммуникациями.

Для потребителя информации очень важной характеристикой является ее адекватность.

Адекватность информации - это определенный уровень соответствия создаваемого

спомощью полученной информации образа реальному объекту, процессу, явлению и т.п.

Вреальной жизни вряд ли возможна ситуация, когда вы можете рассчитывать на полную адекватность информации. Всегда присутствует некоторая степень неопределенности. От степени адекватности информации реальному состоянию объекта или процесса зависит правильность принятия решений человеком.

Формы адекватности информации

Адекватность информации может выражаться в трех формах: семантической, синтаксической, прагматической.

Синтаксическая адекватность. Она отображает формально-структурные характеристики информации и не затрагивает ее смыслового содержания. На синтаксическом уровне учитываются тип носителя и способ представления информации, скорость передачи и обработки, размеры кодов представления информации, надежность и точность преобразования этих кодов и т. п. Информацию, рассматриваемую только с синтаксических позиций, обычно называют данными, т.к. при этом не имеет значения смысловая сторона.

Семантическая (смысловая) адекватность. Эта форма определяет степень соответствия образа объекта и самого объекта. Семантический аспект предполагает учет смыслового содержания информации. На этом уровне анализируются те сведения, которые отражает информация, рассматриваются смысловые связи. В информатике устанавливаются смысловые связи между кодами представления информации. Эта форма служит для формирования понятий и представлений, выявления смысла, содержания информации и ее обобщения.

Прагматическая (потребительская) адекватность. Она отражает отношение информации и ее потребителя, соответствие информации цели управления, которая на ее основе реализуется. Проявляются прагматические свойства информации только при наличии единства информации (объекта), пользователя и цели управления. Прагматический аспект рассмотрения связан с ценностью, полезностью использования информации при выработке потребителем решения для достижения своей цели. С этой точки зрения анализируются потребительские свойства информации. Эта форма адекватности непосредственно связана с практическим использованием информации, с соответствием ее целевой функции деятельности системы.

12

 

 

 

 

 

 

 

 

Меры информации

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Синтаксическая

 

 

 

 

Семантическая

 

 

Прагматическая

 

 

мера

 

 

 

 

мера

 

 

 

мера

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Объем данных

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vд

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Количество информации

 

 

 

 

Количество

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ic=CVд,

 

 

 

 

 

 

 

 

 

 

 

 

информации

 

 

 

 

 

 

 

 

 

 

 

 

где С – коэффициент

 

 

 

 

Iβ(α)=H(β)-H(α),

 

 

 

 

 

 

 

 

 

 

 

 

содержательности

 

 

 

 

где H(α) – энтропия

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 1.2. Меры информации

Меры информации

Классификация мер

Для измерения информации вводятся два параметра: количество информации I и объем данных V. Эти параметры имеют разные выражения и интерпретацию в зависимости от рассматриваемой формы адекватности. Каждой форме адекватности соответствует своя мера количества информации и объема данных (рис 1.2).

Синтаксическая мера информации

Эта мера количества информации оперирует с обезличенной информацией, не выражающей смыслового отношения к объекту.

Объем данных Vд в сообщении измеряется количеством символов (разрядов) в этом сообщении. В различных системах счисления один разряд имеет различный вес и соответственно меняется единица измерения данных:

в двоичной системе счисления единица измерения - бит (bit - binary digit - двоичный разряд);

в десятичной системе счисления единица измерения дит (десятичный разряд).

Количество информации I на синтаксическом уровне невозможно определить без рассмотрения понятия неопределенности состояния системы (энтропии системы).

Этот способ измерения количества информации впервые предложил в 1948 г. К.

Шеннон. По К. Шеннону, информация — это сведения, уменьшающие

неопределенность (энтропию), существовавшую до их получения.

Действительно, получение информации о какой-либо системе всегда связано с изменением степени неосведомленности получателя о состоянии этой системы. Рассмотрим это понятие.

Пусть до получения информации потребитель имеет некоторые предварительные (априорные) сведения о системе α. Мерой его неосведомленности о системе является функция H(α), которая в то же время служит и мерой неопределенности состояния системы.

13

После получения некоторого сообщения β получатель приобрел некоторую дополнительную информацию Iβ(α), уменьшившую его априорную неосведомленность так, что апостериорная (после получения сообщения β) неопределенность состояния системы стала Hβ(α).

Тогда количество информации Iβ(α) о системе, полученной в сообщении β, определится как

Iβ(α)=H(α)-Hβ(α),

т.е. количество информации измеряется изменением (уменьшением) неопределенности состояния системы.

Если конечная неопределенность системы Hβ(α) обратится в нуль, то первоначальное неполное знание заменится полным знанием и количество информации Iβ(α)=H(α). Иными словами, энтропия системы H(α) может рассматриваться как мера недостающей информации.

Энтропия системы H(α), имеющая N возможных состояний, согласно формуле Шеннона, равна:

N

H(α)= Pi log Pi ,

i=1

где Piвероятность того, что система находится в i-ом состоянии.

Для случая, когда все состояния системы равновероятны, т.е. их вероятности равны

Pi= N1 , ее энтропия определяется соотношением:

N

1

 

1

 

H(α)=

log

.

N

 

i=1

 

N

Часто информация кодируется числовыми кодами в той или иной системе счисления, особенно это актуально при представлении информации в компьютере. Естественно, что одно и то же количество разрядов в разных системах счисления может передать разное число состояний отображаемого объекта, что можно представить в виде

соотношения

N=m n,

где N - число всевозможных отображаемых состояний;

m - основание системы счисления (разнообразие символов, применяемых в алфавите);

n - число разрядов (символов) в сообщении.

Наиболее часто используются двоичные и десятичные логарифмы. Единицами измерения в этих случаях будут соответственно бит и дит.

Коэффициент (степень) информативности (лаконичность) сообщения определяется отношением количества информации к объему данных, т.е.

Y=1/Vд, причем 0<Y<1

С увеличением Y уменьшаются объемы работы по преобразованию информации (данных в системе). Поэтому стремятся к повышению информативности, для чего разрабатываются специальные методы оптимального кодирования информации.

Семантическая мера информации

Для измерения смыслового содержания информации, т.е. ее количества на семантическом уровне, наибольшее признание получила тезаурусная мера, которая связывает семантические свойства информации со способностью пользователя принимать поступившее сообщение. Для этого используется понятие тезаурус пользователя.

Тезаурус - это совокупность сведений, которыми располагает пользователь или система.

14

В зависимости от соотношений между смысловым содержанием информации S и тезаурусом пользователя Sp изменяется количество семантической информации Ic, воспринимаемой пользователем и включаемой им в дальнейшем в свой тезаурус. Характер такой зависимости показан на рис.1.3. Рассмотрим два предельных случая, когда количество семантической информации Ic равно 0:

Iс

Sp opt

Sp

Рис 1.3. Зависимость количества семантической информации, воспринимаемой

при Sp=0 пользователь не воспринимает, не понимает поступающую информацию;

при Sp → ∞ пользователь все знает, и поступающая информация ему не нужна. Максимальное количество семантической информации Ic потребитель приобретает

при согласовании ее смыслового содержания S со своим тезаурусом Sp (Sp = Sp opt), когда поступающая информация понятна пользователю и несет ему ранее не известные (отсутствующие в его тезаурусе) сведения.

Следовательно, количество семантической информации в сообщении, количество новых знаний, получаемых пользователем, является величиной относительной. Одно и то же сообщение может иметь смысловое содержание для компетентного пользователя и быть бессмысленным (семантический шум) для пользователя некомпетентного.

При оценке семантического (содержательного) аспекта информации необходимо стремиться к согласованию величин S и Sp.

Относительной мерой количества семантической информации может служить коэффициент содержательности C, который определяется как отношение количества семантической информации к ее объему:

C=Ic / Vд.

Прагматическая мера информации

Эта мера определяет полезность информации (ценность) для достижения пользователем поставленной цели. Эта мера также величина относительная, обусловленная особенностями использования этой информации в той или иной системе. Ценность информации целесообразно измерять в тех же самых единицах (или близких к ним), в которых измеряется целевая функция.

Пример 1.2. В экономической системе прагматические свойства (ценность) информации можно определить приростом экономического эффекта функционирования, достигнутым благодаря использованию этой информации для управления системой:

Inβ (γ)=П(γ/β)-П(γ),

где Inβ (γ)- ценность информационного сообщения β для системы управления γ; П(γ) - априорный ожидаемый экономический эффект функционирования системы

управления у; П(γ/β) - ожидаемый эффект функционирования системы γ при условии, что для

управления будет использована информация, содержащаяся в сообщении β. Для сопоставления введенные меры информации представим в таблице 1.1 Таблица 1.1. Единицы измерения информации и примеры

15

Мера информации

Единицы измерения

Примеры

 

 

 

 

(для компьютерной области)

 

 

 

 

 

Синтаксическая :

Степень

уменьшения

Вероятность события

Шенноновский

Подход

неопределенности

 

 

Компьютерный

Единицы

представления

Бит, байт, Кбайт и т.д.

Подход

информации

 

 

 

 

 

 

 

Семантическая

Тезаурус

 

Пакет

прикладных

 

 

 

программ,

 

 

 

 

персональный

компьютер,

 

 

 

компьютерные сети и т.д.

 

Экономические

Рентабельность,

 

показатели

 

производительность,

 

 

 

коэффициент амортизации и

 

 

 

т.д.

 

Прагматическая

Ценность использования

Емкость памяти, произво-

 

 

 

дительность

компьютера,

 

 

 

ско-рость передачи данных

 

 

 

и т.д.

 

 

 

 

Денежное выражение

 

 

 

Время

обработки

 

 

 

информации

и принятия

 

 

 

решений

 

Качество информации

Возможность и эффективность использования информации обусловливается такими основными ее потребительскими показателями качества, как репрезентативность, содержательность, достаточность, актуальность, своевременность, точность, достоверность, устойчивость.

Репрезентативность информации связана с правильностью ее отбора и формирования в целях адекватного отражения свойств объекта. Важнейшее значение здесь имеют:

правильность концепции, на базе которой сформулировано исходное понятие;

обоснованность отбора существенных признаков и связей отображаемого явления.

Содержательность информации отражает семантическую емкость, равную отношению количества семантической информации в сообщении к объему обрабатываемых данных, т.е. C=Ic/Vд.

С увеличением содержательности информации растет семантическая пропускная способность информационной системы, так как для получения одних и тех же сведений требуется преобразовать меньший объем данных.

Наряду с коэффициентом содержательности С, отражающим семантический аспект, можно использовать и коэффициент информативности, характеризующийся отношением количества синтаксической информации (по Шеннону) к объему данных Y=I/Vд.

16

Достаточность (полнота) информации означает, что она содержит минимальный, но достаточный для принятия правильного решения состав (набор показателей). Понятие полноты информации связано с ее смысловым содержанием (семантикой) и прагматикой. Как неполная, т.е. недостаточная для принятия правильного решения, так и избыточная информация снижает эффективность принимаемых пользователем решений.

Доступность информации восприятию пользователя обеспечивается выполнением соответствующих процедур ее получения и преобразования. Например, в информационной системе информация преобразовывается к доступной и удобной для восприятия пользователя форме. Это достигается, в частности, и путем согласования ее семантической формы с тезаурусом пользователя.

Актуальность информации определяется степенью сохранения ценности информации для управления в момент ее использования и зависит от динамики изменения ее характеристик и от интервала времени, прошедшего с момента возникновения данной информации.

Своевременность информации означает ее поступление не позже заранее назначенного момента времени, согласованного со временем решения поставленной задачи.

Точность информации определяется степенью близости получаемой информации к реальному состоянию объекта, процесса, явления и т.п. Для информации, отображаемой цифровым кодом, известны 4 классификационных понятия точности:

формальная точность, измеряемая значением единицы младшего разряда;

реальная точность, определяемая значением единицы последнего разряда числа, верность которого гарантируется;

максимальная точность, которую можно получить в конкретных условиях функционирования системы;

необходимая точность, определяемая функциональным назначением показателя. Достоверность информации определяется ее свойством отражать реально

существующие объекты с необходимой точностью. Измеряется достоверность информации доверительной вероятностью необходимой точности, т.е. вероятностью того, что отображаемое информацией значение параметра отличается от истинного значения этого параметра в пределах необходимой точности.

Устойчивость информации отражает ее способность реагировать на изменения исходных данных без нарушения необходимой точности. Устойчивость информации, как и репрезентативность, обусловлена выбранной методикой ее отбора и формирования.

17

Формы представления информации

Различают две формы представления информации — непрерывную (аналоговую) и прерывистую (цифровую, дискретную). Непрерывная форма характеризует процесс, который не имеет перерывов и может изменяться в любой момент времени и теоретически на любую величину (например, речь человека, музыкальное произведение). Цифровой сигнал может изменяться лишь в определенные моменты времени и принимать лишь заранее обусловленные значения (например, только значения напряжений 0 и 3,5 В). Моменты возможного изменения уровня цифрового сигнала задает тактовый генератор конкретного цифрового устройства.

Для преобразования аналогового сигнала в цифровой сигнал требуется провести дискретизацию во времени и квантование по уровню.

Дискретизация — замена непрерывного (аналогового) сигнала последовательностью отдельных во времени отсчетов этого сигнала. Наиболее распространена равномерная дискретизация, в основе которой лежит теорема

Котельникова.

На рисунке схематично показан процесс преобразования аналогового сигнала в цифровой сигнал. Цифровой сигнал в данном случае может принимать лишь пять различных уровней. Естественно, что качество такого преобразования невысокое. Из рисунка видно, что изменение цифрового сигнала возможно лишь в некоторые моменты времени (в данном случае этих моментов — одиннадцать).

После такого преобразования непрерывный сигнал представляют последовательностью чисел. Показанный на рисунке непрерывный сигнал заменяется числами: 2-3-4-4-4-3-2-2-3-4-4.

Перечисленные десятичные числа на выходе устройства трансформации непрерывного сигнала в цифровой сигнал кодируют с помощью двоичной системы счисления (единиц и нулей). Результаты данного преобразования можно представить таблицей:

Время

Десятичные

Двоичные числа

 

числа

 

t1

2

0010

t2

3

0011

t3

4

0100

t4

4

0100

t5,

4

0100

t6

3

0011

t7

2

0010

t8

2

0010

t9

3

0011

t10

4

0100

t11

4

0100

В данном случае цифровые сигналы представлены четырьмя разрядами. Очевидно,

что чем больше разрядов у

двоичных чисел (а значит тем больше число уровней

18

квантования) и чем чаще во времени осуществляются отсчёты (выборки), тем точнее будет преобразован непрерывный сигнал в цифровой.

Первое представление об аналоговом и цифровом способах хранения и распространения информации можно получить, рассматривая два способа записи звуковых сигналов: аналоговую и цифровую аудиозаписи.

При аналоговой аудиозаписи непрерывный электрический сигнал, формируемый источником звука на выходе микрофона, с помощью магнитной головки наносится на движущуюся магнитную ленту. Недостатком аналогового способа обработки информации является то, что копия бывает всегда хуже оригинала.

При цифровой аудиозаписи используется процесс выборки, заключающийся в периодическом измерении уровня (громкости) аналогового звукового сигнала (например, поступающего с выхода микрофона) и превращении полученного значения в последовательность двоичных чисел. Для преобразования аналогового сигнала в цифровой используется специальный конвертор, называемый аналого-цифровой преобразователь (АЦП). Сигнал на выходе АЦП представляет собой последовательность двоичных чисел, которая может быть записана на лазерный диск или обработана компьютером. Обратная конверсия цифрового сигнала в непрерывный сигнал осуществляется с помощью цифроаналогового преобразователя (ЦАП).

Качество аналого-цифрового преобразования характеризует параметр, называемый разрешением. Разрешение — это количество уровней квантования, используемых для замены непрерывного аналогового сигнала цифровым сигналом. Восьмиразрядная выборка позволяет получить только 256 различных уровней квантования цифрового сигнала, а шестнадцатиразрядная выборка — 65536 уровней.

Еще один показатель качества трансформации непрерывного сигнала в цифровой сигнал — это частота дискретизации — количество преобразований аналог-цифра (выборок), производимое устройством в одну секунду.

Этот показатель измеряют килогерцами (килогерц — тысяча выборок в секунду). Типичное значение частоты дискретизации современных лазерных аудиодисков — 44,1 кГц.

Имеется тенденция перехода к единому цифровому представлению всех видов информации. Глобальная сеть Интернет претендует на то, чтобы объединить все средства вещания и коммуникации, компьютерные, телефонные, радио- и видео сети, связав их в единое «киберпространство».

19

Важными теоретическими аспектами информатики являются арифметические и логические основы работы ЭВМ, алгебра логики, понятия о системах счисления. На этих вопросах базируются многие разделы информатики.

Системы счисления и формы представления чисел

Информация в ЭВМ кодируется, как правило, в двоичной или в двоично-десятичной системе счисления.

Система счисления - это способ наименования и изображения чисел с помощью символов, имеющих определенные количественные значения.

Символы, используемые для записи чисел, называются цифрами. Множество цифр образует алфавит системы счисления. Часто в алфавит входит и знак “,” (запятая).

Взависимости от способа изображения чисел системы счисления делятся на

позиционные и непозиционные.

Внепозиционной системе значение цифры не зависит от ее положения в записи числа. К таким системам счисления относится, например, римская система счисления.

Система счисления называется позиционной, если одна и та же цифра имеет различные значения, определяемые позицией цифры в последовательности цифр, изображающей число. Количество (Р) различных цифр, используемых для изображения числа в позиционной системе счисления, называется основанием системы счисления. Значение цифр лежат в пределах от 0 до Р-1. Примером позиционной системы счисления может служить привычная нам арабская десятичная система.

Позиционные системы счисления

Любое число C в позиционной системе счисления с основанием Р может быть

представлено в виде полинома:

C= Cn Pn +Cn-1 Pn-1 +…+C1 P1 +C0 P0 +C-1 P-1 +…+C-m P-m (2.1), или

C = n ci p i ,

i=−m

где в качестве Ci могут стоять любые из Р цифр алфавита, а нижние индексы определяют местоположение цифры в числе (разряд):

положительные значения индексов - для целой части числа (n разрядов);

отрицательные значения - для дробной (m разрядов).

Ввычислительных системах применяются две формы представления чисел:

естественная форма, или форма с фиксированной запятой (точкой);

нормальная форма, или форма с плавающей запятой (точкой).

1. С фиксированной запятой все числа изображаются в виде последовательности цифр с постоянным для всех чисел положением запятой, отделяющей целую часть от дробной.

C= Cn Cn-1 …C1 C0, C-1 C-2 C-m (2.2).

Запятая опускается, если дробная часть отсутствует. Позиции цифр в такой записи называются разрядами. Разряды нумеруются влево от запятой, начиная с нуля: 0-й,1-

й,...(n-1)-й, n-й; и вправо от запятой: 1-й, 2-й,...(m-й).

Значение Ci цифры ci в позиционных системах счисления определяется номером

разряда:

Ci =Ci Pi.

Величина Pi называется весом, или значением, i-го разряда.

В позиционной СС вес каждого разряда отличается от веса (вклада) соседнего разряда в число раз, равное основанию системы . В десятичной СС цифры 1-го разряда — единицы, 2-го—десятки, 3-го —сотни и т.д.

20

Пример 1. Десятичная система счисления.

Р=10.

Цифры: 0,1,2,3,4,5,6,7,8,9.

723,1910 =7 102 +2 101 +3 100 +1 10-1 +9 10-2 .

Пример 2. Двоичная система счисления.

Р=2.

Цифры: 0,1.

101110,1012 =1 25 +0 24 +1 23 +1 22 +1 21 +0 20 +1 2-1 +0 2-2 +1 2-3

Эта форма наиболее проста, естественна, но имеет небольшой диапазон представления чисел и поэтому не всегда приемлема в вычислениях.

Максимальное целое число, которое может быть представлено в n разрядах: Nmax = Pn -1.

Минимальное значащее (не равное 0) число, которое можно записать в m разрядах

дробной части:

Nmin =P-m .

Имея в целой части числа n, а в дробной части m разрядов, можно записать всего Pn+m разных чисел.

Пример 3. Двоичная система счисления.

Р=2. n=10, m=6.

Возможное для представления значение N лежит в пределах: 0,015<N<1024.

Если в результате операции получится число, выходящее за допустимый диапазон, происходит переполнение разрядной сетки, и дальнейшие вычисления теряют смысл. В современных ЭВМ естественная форма представления используется как вспомогательная и только для целых чисел.

2.С плавающей запятой каждое число изображается в виде двух групп цифр. Первая группа цифр называется мантиссой, а вторая порядком, причем абсолютная величина мантиссы должна быть меньше 1, а порядок - целым числом. В общем виде

N = ±MP±r ,

число в форме с плавающей запятой может быть представлено так:

где M - мантисса числа (|М| <1);

r - порядок числа (r - целое число); P - основание системы счисления.

Пример 4. Приведем несколько равенств: левая часть равенства – число в естественной форме, правая часть – в нормальной форме. Для записи естественной формы используются 5 разрядов в целой части и 5 разрядов в дробной части.

+00721,35500 = +0,721355 103; +00000,00328 = +0,328 10-2; -10301,20260 = -0,103012026 105.

Нормальная форма представления имеет огромный диапазон отображения чисел и является основной в современных ЭВМ.

Диапазон значащих чисел в системе счисления с основанием Р при наличии m разрядов у мантиссы и s разрядов у порядка (без учета знаковых разрядов у порядка и мантиссы) будет:

Pm P(Ps 1) N (1Pm )P(Ps 1)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]