Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ Петровой Анастасии.docx
Скачиваний:
44
Добавлен:
14.02.2015
Размер:
42.91 Кб
Скачать

Содержание

Введение……………………………………………………………………………………3

1. Понятие «космос», «мегамир», «Вселенная», «метагалактика» и их смысловое содержание…………………………………………………………………………………4

2. Предмет космологии. Переход от идеи геоцентризма к идее гелиоцентризма и становление классической научной космологии………………………………………..5

3. Строение галактик, звезд, планет……………………………………………………..11

4. Концепции происхождения солнечной системы…………………………………….14

Заключение………………………………………………………………………………..17

Список используемой литературы………………………………………………………19

Введение

Космология – один из разделов астрономии. Другие ее разделы изучают конкретные космические объекты с различных точек зрения. Космология же претендует на изучение Вселенной как целого. Точнее, космология есть физическое учение о Вселенной как целом, включающее в себя теорию всего охваченного астрономическими наблюдениями мира как части Вселенной. В этом определении надо различать понятия «учение» и «теория»: учение здесь предполагается более общим понятием, чем теория. Теория – такое учение, которое может и должно быть проверяемо эмпирическими данными, тогда как учение вообще может быть такой проверке и не доступно. Поэтому теория Вселенной как целого невозможна. Но зато возможна теория всего охваченного астрономическими наблюдениями мира. При этом – поскольку никакая часть Вселенной не является физически изолированной системой – теория всего охваченного наблюдениями мира должна рассматривать его как часть Вселенной. В то же время (поскольку космология основывается не только на эмпирических данных, но и на основных законах физики, то есть основных физических теориях, область применимости которых в принципе выходит сколь угодно далеко за пределы охваченного наблюдениями мира) возможно учение о Вселенной как целом, основанное на этих законах. Выводы этого учения, выходящие за границы охваченного наблюдениями мира, не доступны непосредственной эмпирической проверке. Критерием их правильности может служить их сохранение при смене основных физических теорий, лежащих в основе космологии, новыми, более общими и, следовательно, опирающимися на несравненно более широкий круг фактов.

Разумеется, кроме эмпирических и физико-теоретических данных для космологии существенны философские принципы, поскольку она соприкасается с коренными вопросами философии и, кроме того, не может обойтись без далеко идущих обобщений и экстраполяций. Следует заметить, что в применении ко Вселенной словосочетания «как целое» имеет существенно иной смысл, чем в применении к материальному миру: «Вселенная как целое» означает Вселенную в ее отношении ко всем ее частям (областям) и все части Вселенной в их отношении ко Вселенной, иначе говоря, единство всех частей Вселенной. В отношении же к материальному миру словосочетание «как целое» означает единство всех его аспектов (сторон).

1.Понятие «космос», «мегамир», «Вселенная», «метагалактика» и их смысловое содержание.

Объектом естествознания является природа, то есть весь окружающий нас мир. Самым общим понятием, охватывающим весь материальный мир, является понятие "Вселенная". Оно может считаться эквивалентом понятия "природа". В более узком смысле под Вселенной понимается окружающий нас мегамир - совокупность макроскопических тел, их систем астрономического (то есть гигантского) масштаба. Макроскопические тела - это физические системы, состоящие из огромного количества частиц (атомов, молекул). Более конкретно, мегамир - это мировое пространство, небесные тела, их системы, космические газ, пыль, электромагнитные поля, космические элементарные частицы. Вселенную, рассматриваемую, как единое целое, подчиняющуюся общим законом, называют космосом. Значение слова "космос" в греческом языке - "порядок, гармония, красота". Это слово родственно слову "косметика", смысл которого "искусство украшать". Считается, что впервые Вселенную как гармоничную, упорядоченную систему назвал космосом древнегреческий ученый Пифагор. Понятие "космос" часто используют в качестве синонима понятия "Вселенная". В популярной литературе "космическое" очень часто противопоставляют "земному", хотя Земля объект Вселенной.

Наблюдаемая область Вселенной называется Метагалактикой. Ее границы по мере совершенствования астрономических инструментов расширяются, но существует принципиальный предел, обусловленный конечностью скорости света. В настоящее время радиус Метагалактики равен 10 миллиардов световых лет, то есть расстоянию, которое электромагнитные волны проходят за 10 миллиардов лет (скорость света 300000 км/с).

Используемый термин "мегамир" наиболее абстрагирован от понятий конкретных наук, более других терминов наполнен физическим содержанием.

Изучение Вселенной началось, продолжается в течение нескольких тысячелетий; вплоть до середины XX века, это происходило почти исключительно оптическими методами. Это связано с тем, что человеческий глаз оставался единственно возможным приемником электромагнитного излучения, к тому же очень чувствительным. Кривая видности (спектральной чувствительности) человеческого глаза соответствует кривой распределения энергии в спектре Солнца. Поэтому доступной областью излучения космических тел был диапазон от 0.4 до 0.7мкм. Первые астрономические научные наблюдения являлись астрометрическими; изучалось только расположение светил, их видимое движение на небесной сфере.

Такие наблюдения с использованием угломерных инструментов позволили сформулировать первые научные модели мира - Птолемея, Коперника. Сейчас астрономы научились определять расстояния, как до тел Солнечной системы, так, более удаленных объектов: звезд, галактик. Тем самым удалось представить геометрическую структуру мира.

Оптические наблюдения, в настоящее время не потеряли своего значения. Наблюдения в других спектральных диапазонах позволили сделать важные открытия. Так, радиоволны принесли информацию об активных галактиках, о строении ядер галактик, в том числе, нашей Галактики, тогда как оптическое излучение от центра Галактики полностью задерживается космической пылью. Наблюдения в рентгеновском, g-диапазонах позволяли исследовать космические объекты на поздних стадиях их жизни (пульсары, черные дыры, т.д.).

Наука, изучающая мегамир, называется астрономией. Астрономия - составная часть естествознания. Она является самой древней из естественных наук. Из потребностей астрономии возникла математика. Астрономия стимулировала появление физики. Так, астроном Г.Галилей является основоположником механики. С другой стороны в XIX веке физические методы исследования проникли в астрономию, возникла симбиотическая наука - астрофизика, которая изучает физические свойства космических тел. В настоящее время Вселенную изучают представители разных наук. Нейтринное излучение Солнца находится в ведении "чистых" физиков. В контактных исследованиях космических тел участвуют физики, химики, инженеры, космонавты. В будущем науки, изучающие мегамир, будут более обширными, глубокими, чем их земные аналоги.

2. Предмет космологии. Переход от идеи геоцентризма к идеи гелиоцентризма и становление классической научной космологии.

Современная космология – это астрофизическая теория структуры и динамики изменения Метагалактики, включающая в себя определенное понимание свойств всей Вселенной. Космология основывается на астрономических наблюдениях Галактики и других звездных систем, общей теории относительности, физике микропроцессов и высоких плотностей энергии, релятивисткой термодинамике и ряде других новейших физических теорий.

Предметом космологии является изучение строения, происхождения и эволюция Вселенной как целого. Космологию можно называть наукой о космосе. В наше время космосом называют все, находящееся за пределами атмосферы Земли, не так как было в Древней Греции. Космос тогда принимался как «порядок», «гармония», в противоположность хаосу – «беспорядку». Таким образом, масс и их движения. Во-первых, формулируемые физикой универсальные законы функционирования мира считается действующими во всей Вселенной. Во-вторых, производимые астрономами наблюдения тоже признаются распространенными на всю Вселенную. И, в-третьих, истинными признаются выводы, которые не противоречат возможности существования самого наблюдателя, то есть человека (так называемый антропный принцип). К настоящему времени сложились определенные представления о происхождении и эволюции Вселенной. Одним из основных затруднений при изучении астрономических и космологических явлений и объектов является то, что над ними нельзя привести контрольных экспериментов. Можно наблюдать лишь естественный ход событий. Поэтому поразительным является не безграничное разнообразие наблюдаемых астрономических событий, а возможность, анализируя эти явления, делать выводы относительно эволюции звезд и галактик на протяжении миллиардов лет.

Выводы космологии называются моделями происхождения и развития Вселенной. Почему моделями? Дело в том, что одним из основных принципов современного естествознания является представление о возможности проведения в любое время управляемого и воспроизводимого эксперимента над изучаемым предметом. Только если можно провести бесконечное в принципе количество экспериментов, и все они приводят к одному результату, на основе этих экспериментов делают заключение о наличии закона, которому подчиняется функционирование данного объекта. Лишь в этом случае результат считается вполне достоверным с научной точки зрения.

К Вселенной в целом это методологическое правило остается неприменимым. Наука формулирует универсальные законы, а Вселенная уникальна. Это противоречие, которое требует считать все заключения о происхождении и развитии Вселенной не законами, а лишь моделями, то есть возможными вариантами объяснения. Строго говоря, все законы и научные теории являются моделями, поскольку они могут быть заменены в процессе развития науки другими концепциями, но модели Вселенной в большой степени модели, чем многие иные научные утверждения.

В свое время революционный переход от геоцентризма к гелиоцентризму имел драматический характер.

Коперник, будучи каноником и посвятив папе Павлу III труд всей своей жизни "О вращениях небесных сфер" или, как написано в посвящении этого сочинения и решился опубликовать его лишь накануне своей кончины (1543).

Хотя еще Николай Кузанский (1401-1464), философ, ученый, теолог, религиозный проповедник, ревностный католический деятель, ближайший советник папы Пия II, кардинал и епископ, за сотню лет до того утверждал, что Земля, как и любое другое тело, не может быть центром Вселенной:

Итальянский монах, теолог, философ и поэт Джордано Бруно (1548-1600), ставший последователем Николая Кузанского и Николая Коперника и страстным проповедником идеи множественности обитаемых миров, был обвинен инквизицией в ереси и сожжен на костре в Риме.

Однако в 1616 г. комиссия из 11 ученых экспертов представила инквизиции мнение об отстаиваемой Галилеем гелиоцентрической концепции, которое оценивало ее как философски абсурдную и не согласующуюся с доктриной Священного Писания. И мнение этой комиссии довел до сведения Галилея тот же кардинал Беллармин, обязав его отказаться от пропаганды гелиоцентрической системы. Все коперниканские сочинения были включены инквизицией в индекс запрещенных книг.

Тем не менее, Галилео Галилей, правоверный христианин и выдающийся ученый физик, механик и астроном, опубликовал в 1632 г. свой "Диалог о двух главнейших системах мира - птолемеевой и коперниковой" (получивший вначале апробацию церковных властей и разрешение на выпуск в свет), но сразу же в 1633 г. был сурово осужден инквизицией за отстаивание учения Коперника.

Английский астроном Джеймс Брадлей (1693-1762), пытаясь измерить параллактическое смещение звезд вследствие годичного обращения Земли вокруг Солнца, обнаружил значительное смещение их в сторону, противоположную параллактическому (1727), и вскоре нашел правильное объяснение такого смещения: оно связано с годичным орбитальным движением Земли вокруг Солнца и является следствием конечной скорости света (1729). Это открытие аберрации света было первым прямым наблюдательным подтверждением гипотезы Коперника об орбитальном движении Земли вокруг Солнца. Позднее российский астроном и геодезист Василий Яковлевич Струве (1793-1864) в Дерптской обсерватории, немецкий астроном и геодезист Фридрих Вильгельм Бессель (1784-1846) в Кенигсбергской обсерватории, а также Т. Хендерсон в обсерватории на мысе Доброй Надежды независимо друг от друга и почти одновременно впервые успешно измерили годичные звездные параллаксы, связанные с орбитальным движением Земли вокруг Солнца (1837-1840).

Французский физик Жан Бернар Леон Фуко (1819-1868) экспериментально доказал суточное собственное вращение Земли вокруг ее полярной оси, проведя специальные опыты со свободно качающимся маятником ("маятник Фуко") и наблюдая соответствующее систематическое отклонение плоскости качания от начального положения в данном месте на поверхности вращающейся Земли (1851).

Переход от геоцентризма к гелиоцентризму, казалось бы, окончательно обоснованный, вовсе не означает, что геоцентрическая система отсчета утратила всякий смысл: люди по-прежнему живут на Земле и все непосредственные наблюдения, даже астрономические, относят к ней, отвлекаясь от ее движения.

Попытки обнаружить абсолютное движение Земли относительно мирового эфира или установить его увлечение Землей при ее движении, неоднократно предпринимавшиеся американским физиком Альбертом Абрахамом Майкельсоном (1852-1931) и другими, неизменно приводили к отрицательному результату.

Это объяснила лишь созданная Альбертом Эйнштейном (1879-1955) специальная теория относительности (1905). А созданная тем же Эйнштейном, исходя из характерного для классической механики Ньютона тождества гравитационных и инертных масс (или, иначе, исходя из локального принципа эквивалентности гравитационных и инерциальных сил), так называемая общая теория относительности, то есть релятивистская теория пространства, времени и гравитации (1915-1916), в свою очередь, не только предопределенная ньютоновскими динамическими законами, но и сама определяющая эти исходные классические законы со всеми их теоретически ожидаемыми уточнениями, привела к отказу от какого бы то ни было центризма вообще: Метагалактика, или вся наша наблюдаемая астрономическая Вселенная как целое, стала описываться однородной и изотропной безграничной (сферически замкнутой) релятивистской космологической моделью.

Следует упомянуть еще одного видного французского ученого Жюль Анри Пуанкаре (1854-1912), который независимо от Эйнштейна развил математические следствия "постулата относительности".

Первой релятивистской космологической моделью была предложенная самим Эйнштейном стационарная конечная сферически замкнутая модель с положительной средней плотностью массы или эквивалентной ей энергии, сохраняющая свою стабильность за счет уравновешивания общей гравитации (или, по существу, ньютоновского всемирного тяготения в виде квазиупругой силы Гука).

Затем российский физик, геофизик и космолог Александр Александрович Фридман (1888-1925) получил целую серию нестационарных однородных и изотропных релятивистских космологических моделей, систематически равномерно расширяющихся или сжимающихся, а также циклически пульсирующих, причем не только с первоначально дополнительно постулированной Эйнштейном особой космологической постоянной, но и без нее (1922).

Эйнштейн сначала высказал сомнение относительно теоретической обоснованности космологических моделей Фридмана, но вскоре признал необоснованность своего сомнения.

С другой стороны, американский астроном Эдвин Поуэлл Хаббл (1889-1953), сопоставляя наблюдаемое систематическое копплеровское "покраснение" далеких галактик с их расстояниями от нас, установил, что эти галактики систематически равномерно удаляются от нашей Галактики и друг от друга, то есть вся наша Метагалактика систематически равномерно расширяется (1929).

Выяснилось, что нашу в среднем достаточно однородную и изотропную Метагалактику, которая систематически равномерно расширяется, действительно, можно адекватно описывать соответствующей релятивистской космологической моделью Фридмана. В итоге Эйнштейн отказался от первоначально дополнительно постулированной им особой космологической постоянной.

Эта третья глобальная (общая) естественнонаучная революция, радикально преобразовавшая прежде всего астрономию, космологию и физику, означала принципиальный отказ вообще от всякого центризма.

Если каждую из этих трех закономерных последовательных глобальных естественнонаучных революций, которые начинались с решения фундаментальных астрономических проблем, сопровождались радикальным пересмотром прежних космологических представлений о наблюдаемом мире или о всей Вселенной в целом (как правило, в направлении, по возможности, все более и более полного преодоления исходного антропоцентризма или эгоцентризма) и завершались подведением или возведением необходимого нового физического фундамента под надлежащие радикально пересмотренные космологические представления обо всем мироздании, персонифицировать по имени ученых, физически завершавших эти революции, то рассматриваемые революции условно можно назвать аристотелевской, ньютоновской и эйнштейновской.

Человек, действительно, не является центром Вселенной, но вся непосредственно наблюдаемая нами огромная по своим пространственно-временным масштабам и систематически расширяющаяся Метагалактика, со всеми ее галактиками типа нашей Галактики, содержащими звезды типа нашего Солнца, с околозвездными планетными системами типа нашей околосолнечной планетной системы, с планетами типа нашей Земли, оказывается типичной обитаемой космической системой, именно с такими основными характеристиками, которые необходимы и достаточны для появления в ней живых организмов типа известных нам и для их развития вплоть до возникновения разумных существ типа нас самих.

В структурно неисчерпаемой Вселенной непосредственно наблюдаемая нами Метагалактика представляет собой, однако, лишь один из бесконечного множества всевозможных квазизамкнутых нестационарных макромиров, которые описываются соответствующими релятивистскими моделями Фридмана. С учетом квантовых представлений о дискретном строении материи каждый из этих, по крайней мере потенциально соприкасающихся друг с другом, квазизамкнутых макромиров, с заведомо доминирующим, во всяком случае в макромасштабах, универсальным фундаментальным физическим взаимодействием -гравитационным (т.е. всемирным тяготением), не только имеет внутреннюю микроструктуру (от которой можно отвлечься именно лишь в макромасштабах), но и снаружи, как бы отпочковываясь от соседних макромиров, при предельном сокращении его внешних размеров и эффективной массы, очевидно, должен представлять собой надлежащий микрообъект тина соответствующих элементарных или даже субэлементарных частиц (античастиц), каждая из которых, с характерными для них и принципиально существенными в микромасштабах специфическими фундаментальными физическими взаимодействиями электромагнитным. слабым или сильным, в свою очередь, потенциально содержит в себе или скрывает за собой целый макромир, то есть Вселенная в целом должна иметь так называемую макромикросимметрию.

Это четвертая глобальная естественнонаучная революция, предопределяемая явно необходимым и безусловно возможным, но окончательно еще никем не осуществленным синтезом доминирующей в макромасштабах континуальной (непрерывной) общей теории относительности Эйнштейна с выступающими на передний план в микромасштабах и столь же обоснованными тем же Эйнштейном квантовыми (дискретными) представлениями о строении материи в искомую многими единую физическую теорию типа уже создаваемой в настоящее время принципиально единой теории всех фундаментальных физических взаимодействий гравитационного, электромагнитного, слабого и сильного.

Каждый из трех великих преобразователей всего естествознания, какими были настоящие корифеи астрономии, космологии и физики Аристотель, Ньютон и Эйнштейн, не только физически завершил свою космологическую или глобальную естественнонаучную революцию, но и создал необходимые физические и космологические предпосылки для осуществления надлежащей последующей глобальной естественнонаучной революции, что позволяет еще именовать ньютоновскую революцию постаристотелевской, эйнштейновскую постньютоновской, а современную (текущую) - постэйнштейновской.