Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

teplo / Курс лекций по теплотехнике - Скрябин В.И

..pdf
Скачиваний:
33
Добавлен:
14.02.2015
Размер:
2.6 Mб
Скачать

Тк = 8·а/(27·R·b) ; Pк = a/(27·b2) ; (6.4)

а = (27· R2 ·Т2к)/(64 ·Pк) ; b = (27· R ·Тк)/(8 ·Pк). (6.5)

Уравнение Ван-дер-Ваальса при больших плотностях газа дает значительные ошибки. Кроме этого экспериментальным путем доказана, что коэффициенты а, b зависят от температуры и давления, причем эта зависимость очень сложная.

М.П.Вукалович и И.И.Новиков в 1939 г. предложили новое универсальное уравнение состояния реальных газов с учетом ассоциации и диссоциации их молекул, который имеет следующий вид:

(P + a/ν2)·(ν – b) = R·T (1 – С/( ν ·Т(3+2m)/2), (6.6)

где a, b – постоянные уравнения Ван-дер-Ваальса;

С, m – постоянные, определяемые на основании опытных данных.

6.3. Понятия о водяном паре.

Одним из распространенным рабочим телом в паровых турбинах, паровых машинах, в атомных установках, теплоносителем в различных теплообменниках является водяной пар.

Пар - газообразное тело в состоянии, близкое к кипящей жидкости.

Парообразование – процесс превращения вещества из жидкого состояния в парообразное. Испарение – парообразование, происходящее всегда при любой температуре с поверхности жидкости.

При некоторой определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей массе жидкости. Этот процесс называется кипением.

Обратный процесс парообразования называется конденсацией. Она также протекает при постоянной температуре.

Процесс перехода твердого вещества непосредственно в пар называется сублимацией. Обратный процесс перехода пара в твердое состояние называется десублимацией.

При испарении жидкости в ограниченном пространстве (в паровых котлах) одновременно происходит обратное явление – конденсация пара. Если скорость конденсации станет равной скорости испарения , то наступает динамическое равновесие. Пар в этом случае имеет максимальную плотность и называется насыщенным паром.

Если температура пара выше температуры насыщенного пара того же давления, то такой пар называется перегретым. Разность между температурой перегретого пара и температурой насыщенного пара того же давления называется степенью перегрева. Так как удельный объем перегретого пара больше удельного объема насыщенного пара, то плотность перегретого пара меньше плотности насыщенного пара. Поэтому перегретый пар является ненасыщенным паром.

В момент испарения последней капли жидкости в ограниченном пространстве без изменения температуры и давления образуется сухой насыщенный пар. Состояние такого пара определяется одним параметром - давлением.

Механическая смесь сухого и мельчайших капелек жидкости называется влажным паром. Массовая доля сухого пара во влажном паре называется степенью сухости х.

х = mсп / mвп , (6.7) mсп - масса сухого пара во влажном; mвп - масса влажного пара.

Массовая доля жидкости во влажном паре нызвается степенью влажности у.

у = 1 – ν . (6.8)

Для кипящей жидкости при температуре насыщения ν = 0, для сухого пара – ν = 1.

6.4. Характеристики влажного воздуха.

Атмосферный воздух, в основном состоящий из кислорода, азота, углекислого газа, содержит всегда некоторое количество водяного пара.

Смесь сухого воздуха и водяного пара называется влажным воздухом.

Влажный воздух при данном давлении и температуре может содержать разное количество водяного пара. Если смесь состоит из сухого воздуха и насыщенного водяного пара, то его называют насыщенным влажным воздухом. В этом случае во влажном воздухе находится максимально возможное для данной температуры количество водяного пара. При охлаждении этого воздуха, будет происходить конденсация водяного пара. Парциальное давление водяного пара в этой смеси равно давлению насыщения при данной температуре.

Если влажный воздух содержит при данной температуре водяной пар в перегретом состоянии, то он будет называться ненасыщенным. Так как в нем находится не максимально возможное для данной температуры количество водяного пара, то он способен к дальнейшему увлажнению. Поэтому такой воздух используют в качестве сушильного агента в различных сушильных установках.

По закону Дальтона общее давление влажного воздуха равно сумме парциальных давлений сухого воздуха и водяного пара, входящих в его состав:

Р = РВ + РП , (6.9)

где: РВ – парциальное давление сухого воздуха; РП - парциальное давление водяного пара.

Максимальное значение РП при данной температуре влажного воздуха t представляет

собой давление насыщенного водяного пара - РН.

Для нахождения парциального давления пара пользуются специальным прибором – гигрометром. С помощью этого прибора определяют точку росы, т.е. температуру (tp), до которой нужно охладить при постоянном давлении воздух, чтобы он стал насыщенным. Зная точку росы, можно по таблицам определить парциальное давление пара в воздухе как давление насыщения (РН), соответствующее точки росы tp.

Абсолютной влажностью воздуха называется количество водяных паров, находящихся в 1 м3 влажного воздуха. Абсолютная влажность равна плотности пара при его парциальном давлении и температуре воздуха – tн .

Отношение абсолютной влажности ненасыщенного воздуха при данной температуре к абсолютной влажности насыщенного воздуха при той же температуре называется

относительной влажностью воздуха

ϕ = сп / сн или ϕ = сп / сн ·100% , (6.10)

Для сухого воздуха ϕ = 0, для ненасыщенного ϕ < 1, для насыщенного ϕ = 1(100%). Если водяной пар считать как идеальный газ, то по закону Бойля-Мариотта отношение плотностей можно заменить отношением давлений. Тогда:

ϕ = ρП / РН или ρ = РП / РН ·100% . (6.11)

Плотность влажного воздуха слагается из масс, содержащихся в 1 м3 сухого воздуха и водяных паров:

ρ = ρв + ρп = PB/(RB·T) + ϕ/ν'' . (6.12)

Молекулярная масса влажного воздуха определяют по формуле:

μ = 28,95 – 10,934ϕ PН/P (6.13)

Значения РН и ν'' при температуре воздуха t берутся из таблицы водяного пара, ϕ – по данным психрометра, P - по барометру.

Влагосодержание – представляет собой отношение массы пара к массе сухого воздуха:

d = МП / МВ , (6.14)

где: МП, МВ – соответственно массы пара и сухого воздуха во влажном воздухе. Связь между влагосодержанием с относительной влажностью:

d = 0,622 ϕ·РН·/(Р - ϕ·РН). (6.15)

Газовая постоянная:

R = 8314/м = 8314/(28,95 – 10,934·μ·РН/P). (6.16)

Объем влажного воздуха, приходящегося на 1 кг сухого воздуха:

VВЛ.В = R·T/P. (6.17)

Удельный обьем влажного воздуха:

ν = VВЛ.В/(1 + d). (6.17)

Удельная массовая теплоемкость паровоздушной смеси:

ссм = сВ + d·сП . (6.18)

Тема 7. Термодинамические циклы.

7.1. Циклы паротурбинных установок (ПТУ).

Паротурбинная установка является основой современных тепловых и атомных электростанций. Рабочим телом в таких установках является пар какой-либо жидкости (водяной пар). Основным циклом в паротурбинной установке является цикл Ренкина. Принципиальная схема ПТУ показана на рис.7.1 и процесс получения работы происходит в следующим образом. В паровом котле (1) и в перегревателе (2) теплота горения топлива передается воде. Полученный пар поступает в турбину (3), где происходит преобразование теплоты в механическую работу, а затем в электрическую энергию в электрогенераторе (4). Отработанный пар поступает в конденсатор (5), где отдает теплоту охлаждающей воде. Полученный конденсат насосом (6) отправляется в питательный бак (7), откуда питательным насосом (8) сжимается до давления, равного в котле, и подается через подогреватель (10) в паровой котел (1).

Рассмотрим цикл Ренкина на насыщенном паре. Схема установки отличается от предыдущей схемы тем, что в данном случае будет отсутствовать перегреватель. Поэтому на турбину будет поступать насыщенный пар. На рис.7.2,а изображен цикл Ренкина в TSдиаграмме.

Процессы:

3-1 – подвод теплоты от источника в воде q1, состоит из двух процессов: 3-3/ - кипение воды в котле; 3/-1 – испарение воды в пар при постоянном давлении;

1-2 – в турбине пар расширяется адиабатически;

2-2/ - пар конденсируется и отдает тепло q2 охлаждающей воде; 2/-3 – конденсат адиабатически сжимается.

Термический к.п.д. цикла Ренкина определяется по уравнению:

ηt = (q1 – q2)/q1 . (7.1) Так как: q1 = h1 – h3 ; q2 = h2 – h2/ ,

то

ηt = [(h1 – h2) - (h3 – h2/)] /( h1 – h3) = l / q1. (7.2)

Полезная работа цикла равна разности работ турбины и насоса:

l = lт – lн ,

где: lт = h1 – h2 , lн = h3 – h2/ .

В основном lт >> lн , тогда считая h3 = h2/ , можно записать:

ηt = (h1 – h2)/( h1 – h3) . (7.3)

Теоретическуя мощность турбины рассчитывают по формуле: Nт = (h1 – h2)·D/3600 , [Вт] (7.4)

где: D = 3600·m – часовой расход, [кг/ч] m – секундный расход, [кг/с]

Цикл Ренкина на перегретом паре применяется для увеличения термического к.п.д. цикла ПТУ. Для этого перед турбиной ставят перегреватель 2 (Рис.7.1), котрый увеличивает температуру и давление пара. При этом возрастает средняя температура подвода теплоты в цикле. Диаграмма цикла показана на рис.7.2,б Формулы расчета l, ηt, Nт остаются без изменений.

7.2. Циклы двигателей внутреннего сгорания (ДВС).

Циклы поршневых двигателей внутреннего сгорания подразделяют на три группы:

с подводом теплоты при постоянном объеме (карбюраторные ДВС);

с подводом теплоты при постоянном давлении (компрессорные дизели);

со смещанным подводом теплоты при постоянном объеме (безкомпрессорные дизели);

Основными характеристиками или параметрами любого цикла теплового двигателя являются следующие безрамерные величины:

степень сжатия (отношение удельных объемов рабочего тела в начале и конце сжатия)

ε = ν1 / ν2 , (7.5)

степень повышения давления (отношение давлений в конце и в начале изохорного процесса подвода теплоты)

λ = Р3 / Р2 , (7.6)

степень предварительного расширения или степень изобарного расширения (отношение удельных объемов в конце и в начале изохорного процесса подвода теплоты)

ρ = ν3 / ν2 . (7.7)

1). Рассмотрим цикл ДВС с подводом теплоты при постоянном объеме на примере четырехтактного двигателя.

Диаграмма реального двигателя представлена на рис.7.3.

а-1 (1 такт) – в цилиндр через всасывающий клапан поступает смесь воздуха и паров горючего (нетермодинамичемкий процесс); 1-2 (2 такт) – адиабатное сжатие (повышается температура);

2-3 – сгорание горючей смеси, давление быстро возрастает при постоянном объеме (подвод теплоты q1);

3-4 (3 такт) – адиабатное расширение (рабочий процесс, совершается полезная работа); 4-а – открывается выхлопной клапан и отработанные газы покидают цилиндр давление цилиндра падает (отводится тепло q2).

1-а (4 такт) – выталкивание оставшихся в цилиндре газов. Затем процесс повторяется.

Описанный процесс является необратимым (наличие трения, химической реакции в рабочем теле, конечные скорости поршня, теплообмен при конечной разности температур и т.п.).

Для анализа теории тепловых машин термодинамика рассматривает идеальные циклы обратимые циклы. Диаграмма идеального процесса двигателя внутреннего сгорания показана на рис.7.4.

Из этой диаграммы выводится формула для термического к.п.д. цикла с подводом теплоты при постоянном объеме, который имеет следующий вид:

ηt = 1 – 1/εγ , (7.8)

где: ε –степень сжатия (основной показатель работы двигателя, чем выше е, тем выше экономичность ДВС); γ – показатель адиабаты.

2). Идеальный цикл ДВС со смещанным подводом теплоты при постоянном объеме

(безкомпрессорные дизели). Диаграмма цикла показана на рис.7.5.

1-2 - чистый воздух с температурой Т1 сжимается до температуры Т2, которая больше температуры воспламенения топлива. В этот момент в цилиндр через форсунки под давлением впрыскивается топливо.

2-3 – горючая смесь самовоспламеняется и к рабочему телу подводится тепло q1/, давление повышается до Р3.

3-4 – поршень перемешается обратно, поступление и сгорание топлива продолжается при постоянном давлении и подводится тепло q1//.

4-5 – поршень продолжает перемещаться в нижнюю мертвую точку, давление падает (адиабатное расширение);

5-1 – процесс отвода теплоты q2 при постоянном объеме (через выпускной клапан покидают отработанные газы).

Термический к.п.д. цикла определяется по формуле:

ηt = λ – (λ·ργ – 1) / εγ-1·[(λ - 1) + γ·λ·(ρ – 1)] . (7.9)

Цикл двигателей с подводом теплоты при постоянном давлении широкое применение не нашли, так как у этих циклов очень большой коэффициент сжатия.

7.3. Циклы газотурбинных установок (ГТУ).

Основными недостатками поршневых двигателей внутреннего сгорания явяляются ограниченность их мощности и невозможность адиабатного расширения рабочего тела до атмосферного давления, котрые отсутствуют в газотурбиннных установках. ГТУ рабочим телом являются продукты сгорания жидкого или газообразного топлива.

На рис.7.6 дана схема простейшей газотурбинной установки со сгоранием топлива при постоянном давлении. Топливным насосом 5 и компрессором 4 топливо и воздух через форсунки 6 и 7 поступают в камеру сгорания 1. Из камеры продукты сгорания направляются в комбинированные сопла 2, где они расширяются, и поступают на лопатки газовой турбины 3.

На рис.7.7 и рис7.8 представлены идеальный цикл ГТУ на PV и TS диаграммах.

1-2 - адиабатное сжатие до давления Р2;

2-3 – подвод теплоты q1 при постоянном давлении Р2 (сгорание топлива); 3-4 – адиабатное расширение до первоначального давления Р1;

4-1 – охлаждение рабочего тела при постоянном давлении Р1 (отвод теплоты q2); Характеристиками цикла являются:

степень повышения давления - λ = Р2/ Р1 ; степень изобарного расширения - ρ = ν3 /ν2 .

Работа турбины:

lт = h3 – h4 . (7.10)

Работа компрессора:

lн = h2 – h1 . (7.11)

Полезная работа ГТУ равна разности работ турбины и компрессора:

LГТУ = lт – lк . (7.12)

Термический к.п.д. цикла ГТУ имеет вид:

ηt = 1 – 1/ λ (γ-1)/γ . (7.13)

Теоретическая мощность газовой турбины, компрессора и установки (ГТУ): Nт = lт·D/3600 = (h3 – h4)·D/3600 , (7.14)

Nк = lк·D/3600 = (h2 – h1)·D/3600 , (7.15)

NГТУ = lГТУ·D/3600 = [(h3 – h4) (h2 – h1) ]·D/3600 . (7.16)

Действительный цикл ГТУ отличается от теоретического наличием потерь на трение и вихреообразование в турбине и компрессоре. Эффективными методами повышения экономичности газотурбинных установок являются: регенерация теплоты, ступенчатое сжатие и расширение рабочего тела и пр.

Раздел II. Основы теории теплообмена.

Тема 8. Основные понятия и определения.

Теория теплообмена изучает процессы распространения теплоты в твердых, жидких и газообразных телах. Перенос теплоты может передаваться тремя способами:

теплопроводностью;

конвекцией;

излучением (радиацией).

Процесс передачи теплоты теплопроводностью происходит при непосредственном контакте тел или частицами тел с различными температурами и представляет собой молекулярный процесс передачи теплоты. При нагревании тела, кинетическая энергия его молекул возрастает и частицы более нагретой части тела, сталкиваясь с соседними молекулами, сообщают им часть своей кинетической энергии.

Конвекция – это перенос теплоты при перемещении и перемешивании всей массы неравномерно нагретых жидкости или газа. При этом, перенос теплоты зависит от скорости движения жидкости или газа прямо пропорционально. Этот вид передачи теплоты сопровождается всегда теплопроводностью. Одновременный перенос теплоты конвекцией и теплопроводностью называется конвективным теплообменом.

Винженерных расчетах часто определяют конвективный теплообмен между потоками жидкости или газа и поверхностью твердого тела. Этот процесс конвективного теплообмена называют конвективной теплоотдачей или просто теплоотдачей.

Процесс передачи теплоты внутренней энергии тела в виде электромагнитных волн называется излучением (радиацией). Этот процесс происходит в три стадии: превращение части внутренней энергии одного из тел в энергию электромагнитных волн, распространение э/м волн в пространстве, поглощение энергии излучения другим телом. Совместный теплообмен излучением и теплопроводностью называют радиационно-

кондуктивным теплообменом.

Совокупность всех трех видов теплообмена называется сложным теплообменом. Процессы теплообмена могут происходит в различных средах: чистых веществах и разных смесях, при изменении и без изменения агрегатного состояния рабочих сред и т.д.

Взависимости от этого теплообмен протекает по разному и описывается различными уравнениями.

Процесс переноса теплоты может сопровождаться переносом вещества (массообмен). Например испарение воды в воздух, движение жидкостей или газов в трубопроводах и.т.п. и.т.д. Тогда процесс теплообмена усложняется, так как теплота дополнительно переносится с массой движущегося вещества.

Тема 9.Теплопроводность.

9.1. Температурное поле. Уравнение теплопроводности.

Будем рассматривать только однородные и изотропные тела, т.е. такие тела, которые обладают одинаковыми физическими свойствами по всем направлениям. При передачи теплоты в твердом теле, температура тела будет изменяться по всему объему тела и во времени. Совокупность значений температуры в данный момент времени для всех точек изучаемого пространства называется температурным полем:

t = f(x,y,z,τ) , (9.1)

где:t –температура тела; x,y,z -координаты точки; τ - время.

Такое температурное поле называется нестационарным ∂t/∂ι ≠ 0, т.е. соответствует неустановившемуся тепловому режиму теплопроводности Если температура тела функция только координат и не изменяется с течением времени, то температурное поле называется стационарным:

t = f(x,y,z) , ∂t/∂ι = 0 (9.2)

Уравнение двухмерного температурного поля: для нестационарного режима:

t = f(x,y,τ) ; ∂t/∂z = 0 (9.3)

для стационарного режима:

t = f(x,y) , ∂t/∂z = 0; ∂t/∂ι = 0 (9.4)

Уравнение одномерного температурного поля: для нестационарного режима:

t = f(x,τ) ; ∂t/∂y = ∂t/∂z = 0; ∂t/∂ι ≠ 0 (9.5)

для стационарного режима:

t = f(x) ; ∂t/∂y = ∂t/∂z = 0; ∂t/∂ι = 0 (9.6)

Изотермической поверхностью называется поверхность тела с одинаковыми температурой.

Рассмотрим две изотермические поверхности (Рис.9.1) с температурами t и t + ∆t.Градиентом температуры называют предел отношения изменения температуры∆tк расстоянию между изотермами по нормали ∆n, когда стремится к нулю:

gradt = |gradt| = lim[∆t/∆n]∆n→0 = ∂t/∂n (9.7)

Температурный градиент-это вектор, направленной по нормали к изотермической поверхности в сторону возрастания температуры и численно равный производной

температуры t по нормалиn:

gradt = ∂t/∂n no , (9.7*)

где:no единичный вектор.

Количество теплоты, проходящее через изотермическую поверхность F в единицу времени называется тепловым потоком – Q, [Вт=Дж/с].

Тепловой поток, проходящий через единицу площади называют плотностью теплового потока – q = Q / F, [Вт/м2]

Для твердого тела уравнение теплопроводности подчиняется закону Фурье:

||Тепловой поток, передаваемая теплопроводностью,||пропорциональна градиенту температуры и площади сечения,||перпендикулярного направлению теплового потока.

Q = -λ·F· ∂t/∂n, (9.8)

или

q = -λ · ∂t/∂n ·no = -λ·gradt , (9.9)