Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛАБ MAPLE ИС / ЛАБ 1-3 собственные значения матрицы.doc
Скачиваний:
116
Добавлен:
15.02.2015
Размер:
888.32 Кб
Скачать

13

Собственные значения и собственные векторы матрицы

I. Теоретическая часть

Основные вопросы:

  1. Характеристическая матрица и характеристический многочлен

  2. Собственные значения и собственные векторы матрицы

  3. Нахождение собственных векторов

1. Характеристическая матрица и характеристический многочлен

Рассмотрим квадратную матрицу п-го порядка:

. (1)

Умножим единичную матрицу того же порядка на число  и вычтем её из матрицы А.

Определение. Матрица вида

, (2)

где λ − независимая переменная, называется характеристической матрицей для матрицы А.

Определение. Определитель характеристической матрицы (2)

(3)

называется характеристическим многочленом матрицы А.

Действительно, выражение (3) является многочленом относительно λ, в чём легко убедиться, вычислив определитель любым способом, например, разложением по первой строке. Степень характеристического многочлена матрицы равна порядку этой матрицы, в данном случае эта степень равна n.

Определение. Следом матрицы А называется сумма её диагональных элементов:

. (4)

Найдём характеристические многочлены для квадратных матриц 2-го и 3-го порядков.

1. Для матрицы 2-го порядка

,

. (5)

где , или− величина определителя матрицыА.

2. Для матрицы 3-го порядка

,

. (6)

Доказательство. Разложим определитель по первой строке:

=

=

, ч.т.д.

В общем виде характеристический многочлен можно записать в виде:

. (7)

Если положить λ = 0, то есть свободный член многочлена, равный определителю матрицыА. Это видно и из формулы (2).

Пример 1. Найти характеристический многочлен матрицы .

Решение.

.

Пример 2. Найти характеристический многочлен матрицы .

Решение. Характеристический многочлен найдём, разложив определитель по первой строке:

.

Проверим правильность вычисления коэффициентов по формуле (6):

.

;

.

2. Собственные значения и собственные векторы матрицы

Определение. Рассмотрим квадратную матрицу . Пусть для некоторого ненулевого вектораи числа выполняется равенство

АХ = λХ. (8)

Тогда вектор называетсясобственным вектором матрицы А, а число называется собственным значением этой матрицы.

Определение. Уравнение называется характеристическим уравнением.

Определение. Корнем многочлена называется значение переменной, обращающее этот многочлен в нуль. Корнем матричного многочлена будет матрица, обращающая этот многочлен в нулевую матрицу.

Теорема 1. Собственные значения матрицы А являются корнями характеристического многочлена.

Верно и обратное: каждый корень характеристического многочлена матрицы А будет её собственным значением.

Теорема 2. Если – собственные значения матрицыА, то:

1)

2)

Эти равенства можно использовать в качестве проверки вычисленных собственных значений.

Теорема 3. (Теорема Гамильтона – Кэли).

Любая квадратная матрица является корнем своего характеристического многочлена, т. е. , где под нулём понимается нулевая матрица, а под свободным членом характеристического многочлена – этот свободный член, умноженный на единичную матрицу.

Пример 1. Найти собственные значения матрицы и проверить правильность решения по теореме 3. Проиллюстрировать теорему Гамильтона – Кэли.

Решение. Чтобы найти собственные значения, приравняем к нулю характеристический многочлен:

=0.

Корни квадратного уравнения: .

Сумма корней ; произведение корней.

Подставим матрицу А в характеристический многочлен:

.

В результате получили нулевую матрицу. Это и означает, что матрица является корнем своего характеристического многочлена.

Пример 2. Показать, что матрица является корнем своего характеристического многочлена.

Решение. ;

(.

Найдём характеристический многочлен матрицы:

.

Вычислим , для этого нужно найти

, и.

Тогда

.