Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

lekcii_po_mikrobiologii0 / Л-2.структура

.doc
Скачиваний:
105
Добавлен:
22.02.2015
Размер:
46.08 Кб
Скачать

Лекция 2.

Структура бактериальной клетки.

Главными отличиями прокариотической (бактериальной) клетки от эукариотической является: отсутствие оформленного ядра (т.е. ядерной мембраны), отсутствие внутриклеточных мембран, ядрышек, комплекса Гольджи, лизосом, митохондрий.

Основными структурами бактериальной клетки являются:

  1. Нуклеоид – представляет собой наследственный (генетический) материал бактериальной клетки, представлен 1 молекулой ДНК, замкнутой в кольцо и суперспирализованной (скручена в рыхлый клубок). Длина ДНК около 1мм. Объем информации около 1000 генов (признаков). Нуклеоид не отделен от цитоплазмы мембраной.

  2. Цитоплазма – коллоид, т.е. водный раствор белков, углеводов. Липидов, минеральных веществ, в котором находятся рибосомы, включения, плазмиды.

    1. На рибосомах происходит биосинтез белка. Рибосомы прокариот отличаются от эукариотических более мелкими размерами (70 S).

    2. Включения – запасные питательные вещества бактериальной клетки, а также скопления пигментов. К запасным питательным веществам относятся: гранулы волютина (неорганического полифосфата), гликоген, гранулеза, крахмал, капли жира, скопления пигмента, серы, кальция. Включения, как правило, образуется при выращивании бактерий на богатых питательных средах и исчезает при голодании.

    3. Плазмиды – небольшие кольцевые молекулы ДНК, паразитирующие внутри бактриальной клетки. Кроме собственной генетической информации (F-плазмиды) плазмиды могут нести дополнительную генетическую информацию, полезную для бактериальной клетки. Например, плазмиды могут кодировать фермент, разрушающий пенициллин (пенициллиназа). В этом случае бактерия, зараженная такой плазмидой будет устойчива к пенициллину. Плазмиды, кодирующие гены устойчивости к лекарственным препаратам, называются R-плазмидами (от resistance). Плазмиды, несущие только свою собственныю информацию, называют F- плазмидами.

  3. Клеточная мембрана – ограничивает цитоплазму. Сосотоит из двойного слоя фосфолипидов и встроенных мембранных белков. КМ кроме барьерной и транспортной функций выполняют роль центра метаболической активности (в отличие от эукариотической клетки). Белки мембраны, ответственные за перенос необходимых веществ в клетку, называют пермеазами. На внутренней поверхности КМ находятся ферментные ансамбли , т.е.упорядоченные скопления молекул ферментов, ответственных за синтез энергоносителей – молекул АТФ. КМ может образовывать впячивания в цитоплазму, которые называют мезосомами. Существует два вида мезосом:

    1. Септальные – образуют поперечные перегородки в процессе деления клетки.

    2. Латеральные – служат для увеличения поверхности КМ и повышения скорости обменных процессов.

Нуклеоид, ЦП и КМ образуют протопласт.

Одним из отличительных свойств бактерий является очень высокое внутриклеточное осмотическое давление (от 5 до 20 атм), что является результатом интенсивного обмена веществ. Поэтому для защиты от осмотического шока бактериальная клетка окружена прочной клеточной стенкой.

По строению клеточной стенки все бактерии делятся на 2 группы:

  1. Имеющие однослойную клеточную стенку – Грам-положительные.

  2. Имеющие двухслойную клеточную стенку – Грам-отрицательные.

Названия Грам+ и Грам- имеют свою предисторию. В 1884 датский микробиолог Ганс Христиан Грам разработал оригинальный метод окраски микробов, в результате которого одни бактерии окрашивались в синий цвет (грам+), а другие в красный (грам-). Химическая основа различной окраски бактерий по методу Грама была выяснена сравнительно недавно – около 35 лет назад. Оказалось, что Г- и Г+ бактерии имеют разное строение клеточной стенки.

Строение клеточной стенки Г+ бактерий. Основу клеточной стенки Г+ бактерий составляют 2 полимера: пептидогликан и тейхоевые кислоты. Пептидогликан представляет собой линейный полимер, в котором чередуются остатки мурамовой кислоты и ацетилглюкозамина. С мурамовой кислоте ковалентно связан тетрапептид (белок). Нити пептидогликана связаны между собой через пептиды и образуют прочный каркас – основу клеточной стенки. Между нитями пептидогликана находится другой полимер – тейхоевые кислоты (глицерол ТК и рибитол ТК) - полимер полифосфатов. Тейхоевые кислоты выступают на поверхности клеточной стенки и являются главными АГ Г+ бактерий. Кроме этого, в состав клеточной стенки Г+ бактерий входит рибонуклеат Mg.

Стенка Г- бактерий состоит из 2-х слоев: внутренний слой представлен моно- или бислоем пептидогликана (тонкий слой) . Наружный слой состоит из липополисахаридов, липопротеина, белков, фосфолипидов. ЛПС всех Г- бактерий обладают токсическими и порогенными свойствами и называются эндотоксинами.

При воздействии некоторых веществ, например пенициллина, нарушается синтез пептидогликанового слоя. При этом из Г+ бактерий образуется протопласт, а из Г- сферопласт ( т.к. сохраняется наружный слой клеточной стенки).

При определенных условиях культивтрования клетки, лишенные клеточной стенки, сохраняют способность к росту и делению, и такие формы называют L- формами (по названи. Института Листера, где было открыто это явление). В некоторых случаях после устранения фактора, тормозящего синтез клеточной стенки L-формы могут превратиться в исходные формы.

Многие бактерии синтезируют слизистое вещество, состоящее из мукополисахаридов, которое откладывается с наружной стороны клеточной стенки, окружая бактериальную клетку слизистым чехлом. Это капсула. Функция капсулы – защита бактерий от фазоцитоза.

Поверхностные структуры бактериальной клетки.

  1. Органы прикрепления к субстрату (адгезии) – пили (фимбрии) или реснички. Начинаются от мембраны клетки. Сосотоят из белка пилина. Число пилей может достигать 400 на 1 клетку.

  2. Органы передачи наследственной информации – F-пили или sex-пили. F-пили образуются только в том случае, если клетка нечет плазмиду, т.к. белки F-пили кодирует ДНК плазмиды. Они представляют собой тонкую длинную трубочку, которая прикрепляется к другой бактериальной клетке. Через образовавшийся канал плазмида переходит в соседнюю бактериальную клетку.

  3. Органы движения – жгутики – представляют собой спиральные нити. Их длина может превышать их диаметр в 10 и более раз. Жгутики состоят из белка флагеллина. Основание жгутика связано с клеточной мембраной посредством базального тельца. Базальное тельце состоит из системы колец, которые вращаясь передают вращательное движение жгутику. По расположению жгутиком бактерии делятся на моно-, лофо-, амфи-, перитрихи.

Спорообразование.

При неблагоприятных условиях некоторые бактерии способны образовывать эндоспоры - покоящиеся клетки. Одна клетка образует одну эндоспору, т.е. спорообразование не является формой размножения, а служит для сохранения вида. Споры чрезвычайно устойчивы к высоким температурам, высушиванию, химическим веществам и сохраняют жизнеспособность в течение десятков лет. В отличие от вегетативных форм, в спорах почти полностью подавлен обмен, геном находится в репрессивном состоянии. Споры бактерий имеют многослойную оболочку, богатую кальцием, и очень небольшое количество свободной воды. При попадании в благоприятные условия спора прорастает, и из нее образуется вегетативная клетка.

Морфологические особенности некоторых групп микроорганизмов.

Спирохеты.

Порядок Spirochartales

Cем. Spirichaetaceae и Leptospiraceae

Род Treponema Leptospira

Род Borrelia

Описаны в 1868 Обермеййером. Г- тонкие подвижные извитые микроорганизмы.длина от 5 до 250мкм, спор и капсул не образуют. В неблагоприятных условиях некоторые спирохеты (T.pallidum) образуют покоящиеся формы - цисты. Содержат много липидов, поэтому плохо окрашиваются по Граму. Для окраски используется метод Романовского_Гимза. Подвижность обусловоена фибриллярным аппаратом, состоящим из сократительного белка. Осевые фибриллы закреплены на противоположных концах клетки и обвивают цитоплазму. Количество фибрилл у трепонем 8-14, у боррелий 15-20, у лептоспир 2. Количество завитков: у трепонем 8-14 туго закрученных с одинаковой амплитудой, у боррелий до 20 неравномерных завитков, у лептоспир большое количество мелких витков, причем концы клетки образуют характерные крючки, отчего лептоспира непоминает по форме латинские буквы С или S.

Многие спирахеты не удается культивтровать на питательных средах.

Заболевания, вызываемые спирохетами:

T.pallidum - сифилис

B.recurrentis – возвратный тиф

B.burdorferi – болезнь Лайма (неспецифический полиартрит)

L.interrogans – лептоспироз

Микоплазмы.

Относятся к классу Mollicates. Виды, патогенные для человека: M.pneumoniae, M.hominis, M.urealyticum. Широко распространенная в природе группа прокариот, не имеющая клеточной стенки. Не окрашивается по Граму. Клетка имеет неправильную, изменчивую форму и размеры. Могут приобретать шаровидную форму, нитевидную. Размножаются почкованием и фрагментацией. Имеют самый малый геном среди бактерий - кольцевидную молекулу ДНК. В каждой бактериальной клетке может присутствовать от нескольких до несколько десятков геномов. Микоплазмы размножаются почкованием. Почка микоплазмы называется «элементарное тельце», размеры которого сравнимы с размерами крупных вирусов.

Микоплазмы способны расти на плотных питательных средах сложного состава, требуют добавления факторов роста: глюкозы, аргинина, мочевины, холестерола. Образующиеся колонии имеют в центре возвышение (похожи на яичницу-глазунью).

Микоплазмы являются возбудителями артритов, пневмоний, заболеваний урогенитального тракта.

Р†††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††† облигатными внутриклеточными паразитами. Культивируются на куриных эмбрионах, в культуре тканей. По Граму окрашиваются плохо. Метод окраски – по Романовскому-Гимза. По морфологии различают кокковидные, палочковидные, нитевидные формы. Естественным резервуаром в природе риккетсий являются членистоногие. Заболевания, вызываемые риккетсиями:

R.prowazekii - Сыпной тиф

C.burneti - Лихорадка Ку

Хламидии.

Описаны в 1907 Хальберштедтером.

Порядок - Chlamydiales

Семейство - Chlamydiaceaea

Род Chlamydia Сhlamydophila

Мелкие неподвижные Г- бактерии кокковидной формы. Облигатные внутриклеточные паразиты. Спор и капсул не образуют. В цитоплазме зараженных клеток хламидии существуют в виде ретикулярных телец – репродуктивных форм. Оазмеры РТ около 1 мкм. После нескольких циклов деления РТ конденсируются, уплотняясь и уменьшаясь в размерах до 0,3мкм, образуя т.н. элементарные тельца – инфеционная форма хламидии. ЭТ после гибели клетки выходят в окружающую среду и способны заражать новые клетки.

Патогенные хламидии:

C.trachomatis – трахома и урогенитальный хламидиоз.

Chlamydophila psittaci - пситтакоз

Chlamydophila pneumoniae – пневмония

Актиномицеты

Порядок Actinomycetales

Сем. Mycobacteriaceae Nocardiaceae Straptomycetaceae

Впервые описаны Харнем (?) в 1877. По внешним признакам сходны с мицелиальными грибами, однако относятся к бактериям, т.к. являются прокариотами. Актиномицеты имеют форму палочек или длинных ветвящихся нитей – гифов. Размножаются фрагментицией, некоторые (нокардии и стрептомицеты) – спорами.

Построению клеточной стенки Г+, капсул не образуют. Большинство актиномицетов обитаетв почве. Многие из них являются продуцентами антибиотиков.

Патогенные виды:

A.israelii - актиномикоз

N.asteroides - нокардиоз

Соседние файлы в папке lekcii_po_mikrobiologii0