Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2_modul_kruglikov

.pdf
Скачиваний:
7
Добавлен:
13.03.2015
Размер:
1.29 Mб
Скачать

2 модуль.

1. CИНХРОННЫЕ МАШИНЫ

Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре. Устройство[править | править исход-

ный текст]

Основными частями синхронной машины являются якорь и индуктор. Наиболее частым исполнением является такое, при котором якорь располагается на статоре, а на отделённом от него воздушным зазором роторе находится индуктор.

Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии. Поле якоря оказывает воздействие на поле индуктора и называется поэтому также полем реакции якоря. В генераторах поле реакции якоря создаётся переменными токами, индуцируемыми в обмотке якоря от индуктора.

Индуктор состоит из полюсов — электромагнитов постоянного тока[1] или постоянных магнитов микромашинах). Индукторы синхронных машин имеют две различные конструкции: явнополюсную или неявнополюсную. Явнополюсная машина отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока. При неявнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором, с той лишь разницей, что между полюсами оставляется место, незаполненное проводниками (так называемый большой зуб). Неявнополюсные конструкции применяются в быстроходных машинах, чтобы уменьшить механическую нагрузку на полюса.

Для уменьшения магнитного сопротивления, то есть для улучшения прохождения магнитного потока применяются ферромагнитные сердечники ротора и статора. В основном они представляют собой шихтованную конструкцию из электротехнической стали (то есть набранную из отдельных листов). Электротехническая сталь обладает рядом интересных свойств. В том числе она имеет повышенное содержание кремния, чтобы повысить её электрическое сопротивление и уменьшить тем самым вихревые токи.

Принцип действия[править | править исходный текст]

Двигательный принцип[править | править исходный текст] Принцип действия синхронного двигателя основан на взаимодействии вращающегося магнитного поля якоря и магнитного поля полюсов индуктора. Обычно якорь расположен на статоре, а индуктор — на роторе. В

мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт щетка - кольцо), в маломощных — постоянные магниты. Существует обращённая конструкция двигателей, в которой якорь расположен на роторе, а индуктор — на статоре (в устаревших двигателях, а также в современных криогенных синхронных машинах, в которых в обмотках возбуждения используются сверхпроводники.)

Запуск двигателя. Двигатель требует разгона до частоты, близкой к частоте вращения магнитного поля в зазоре, прежде чем сможет работать в синхронном режиме. При такой скорости вращающееся магнитное поле якоря сцепляется с магнитными полями полюсов индуктора (если индуктор расположен на статоре, то получается, что вращающееся магнитное поле вращающегося якоря (ротора) неподвижно относительно постоянного поля индуктора (статора), если индуктор на роторе, то магнитное поле вращающихся полюсов индуктора (ротора) неподвижно относительно вращающегося магнитного поля якоря (статора)) — это явление называется «вход в синхронизм».

Для разгона обычно используется асинхронный режим, при котором обмотки индуктора замыкаются через реостат или накоротко, как в асинхронной машине, для такого режима запуска в машинах на роторе делается короткозамкнутая обмотка, которая также выполняет роль успокоительной обмотки, устраняющей "раскачивание" ротора при синхронизации. После выхода на скорость близкую к номинальной (>95%) индуктор запитывают постоянным током.

В двигателях с постоянными магнитами применяется внешний разгонный двигатель.

Часто на валу ставят небольшой генератор постоянного тока, который питает электромагниты.

Также используется частотный пуск, когда частоту тока якоря постепенно увеличивают от 0 до номинальной величины. Или наоборот, когда частоту индуктора понижают от номинальной до 0, т.е. до постоянного тока.

Частота вращения ротора [об/мин] остаётся неизменной, жёстко связанной с частотой сети [Гц] соотношением:

,

где — число пар полюсов ротора.

Синхронные двигатели при изменении возбуждения меняют импеданс с емкостного на индуктивный. Перевозбуждённые СД на холостом ходу применяют в качестве компенсаторов реактивной мощности. Синхронные двигатели в промышленности обычно применяют при единичных мощностях свыше 300 кВт, при меньших мощностях обычно применяется более простой (и надежный) асинхронный двигатель с короткозамкнутым ротором.

Генераторный режим[править | править исходный текст] Обычно синхронные генераторы выполняют с якорем, расположенным на статоре, для удобства отвода электрической энергии. Поскольку мощность возбуждения невелика по сравнению с мощностью, снимаемой с

якоря (0,3...2%), подвод постоянного тока к обмотке возбуждения с помощью двух контактных колец не вызывает особых затруднений. Принцип действия синхронного генератора основан на явлении электромагнитной индукции; при вращении ротора магнитный поток, создаваемый обмоткой возбуждения, сцепляется поочередно с каждой из фаз обмотки статора, индуцируя в них ЭДС. В наиболее распространенном случае применения трехфазной распределенной обмотки якоря в каждой из фаз, смещенных друг относительно друга на 120 градусов, индуцируется синусоидальная ЭДС. Соединяя фазы по стандартным схемам «треугольник» или «звезда», на выходе генератора получают трехфазное напряжение, являющееся общепринятым стандартом для магистральных электросетей.

Частота индуцируемой ЭДС [Гц] связана с частотой вращения ротора [об/мин] соотношением:

,

где — число пар полюсов ротора.

Часто синхронные генераторы используют вместо коллекторных машин для генерации постоянного тока, подключая их обмотки якоря к трехфазным выпрямителям. Разновидности синхронных машин[править | править исходный текст]

Гидрогенератор — явнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от гидравлической турбины (при низких скоростях вращения 50-600 об/мин). Турбогенератор — неявнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от паровой или газовой турбины при высоких скоростях вращения ротора (6000 (редко), 3000, 1500 об/мин.)

Синхронный компенсатор — синхронный двигатель, предназначенный для выработки реактивной мощности, работающий без нагрузки на валу (в режиме холостого хода); при эт ом по обмотке якоря проходит практически только реактивный ток. Синхронный компенсатор может работать в режиме улучшения коэффициента мощности или в режиме стабилизации напряжения. Дает ёмкостную нагрузку.

Машина двойного питания (в частности АСМ) — синхронная машина с питанием обмоток ротора и статора токами разной частоты, за счёт чего создаются несинхронные режимы работы Ударный генератор — синхронный генератор (как правило, трёхфазного тока), предназначенный для кратковременной работы в режиме короткого замыкания (КЗ).

Также существуют безредукторные, шаговые, индукторные, гистерезисные, бесконтактные синхронные двигатели.

2 вопрос.

Синхронные генераторы.

Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре. Устройство

Основными частями синхронной машины являются якорь и индуктор. Наиболее частым исполнением является такое, при котором якорь располагается на статоре, а на отделённом от него воздушным зазором роторе находится индуктор.

Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии. Поле якоря оказывает воздействие на поле индуктора и называется поэтому также полем реакции якоря. В генераторах поле реакции якоря создаётся переменными токами, индуцируемыми в обмотке якоря от индуктора.

Индуктор состоит из полюсов — электромагнитов постоянного тока или постоянных магнитов (в микромашинах). Индукторы синхронных машин имеют две различные конструкции: явнополюсную или неявнополюсную. Явнополюсная машина отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока. При неявнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором, с той лишь разницей, что между полюсами оставляется место, незаполненное проводниками (так называемый большой зуб). Неявнополюсные конструкции применяются в быстроходных машинах, чтобы уменьшить механическую нагрузку на полюса.

Для уменьшения магнитного сопротивления, то есть для улучшения прохождения магнитного потока применяются ферромагнитные сердечники ротора и статора. В основном они представляют собой шихтованную конструкцию из электротехнической стали (то есть набранную из отдельных листов). Электротехническая сталь обладает рядом интересных свойств. В том числе она имеет повышенное содержание кремния, чтобы повысить её электрическое сопротивление и уменьшить тем самым вихревые токи.

Принцип действия

Двигательный принцип

Принцип действия синхронного двигателя основан на взаимодействии вращающегося магнитного поля якоря и магнитного поля полюсов индуктора. О бычно якорь расположен на статоре, а индуктор — на роторе. В мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт щетка - кольцо), в маломощных — постоянные магниты. Существует обращённая конструкция двигателей, в которой якорь расположен на роторе, а индуктор — на статоре (в устаревших двигателях, а также в современных криогенных синхронных машинах, в которых в обмотках возбуждения используются сверхпроводники.)

Запуск двигателя. Двигатель требует разгона до частоты, близкой к частоте вращения магнитного поля в зазоре, прежде чем сможет работать в синхронном режиме. При такой скорости вращающееся магнитное поле якоря сцепляется с магнитными полями полюсов индуктора (если индуктор расположен на статоре, то получается, что вращающееся магнитное поле вращающегося якоря (ротора) неподвижно относительно

постоянного поля индуктора (статора), если индуктор на роторе, то магнитное поле вращающихся полюсов индуктора (ротора) неподвижно относительно вращающегося магнитного поля якоря (статора)) — это явление называется «вход в синхронизм».

Для разгона обычно используется асинхронный режим, при котором обмотки индуктора замыкаются через реостат или накоротко, как в асинхронной машине, для такого режима запуска в машинах на роторе делается короткозамкнутая обмотка, которая также выполняет роль успокоительной обмотки, устраняющей "раскачивание" ротора при синхронизации. После выхода на скорость близкую к номинальной (>95%) индуктор запитывают постоянным током.

В двигателях с постоянными магнитами применяется внешний разгонный двигатель.

Часто на валу ставят небольшой генератор постоянного тока, который питает электромагниты.

Также используется частотный пуск, когда частоту тока якоря постепенно увеличивают от 0 до номинальной величины. Или наоборот, когда частоту индуктора понижают от номинальной до 0, т.е. до постоянного тока.

Частота вращения ротора [об/мин] остаётся неизменной, жёстко связанной с частотой сети [Гц] соотношением:

,

где — число пар полюсов ротора.

Синхронные двигатели при изменении возбуждения меняют импеданс с емкостного на индуктивный. Перевозбуждённые СД на холостом ходу применяют в качестве компенсаторов реактивной мощности. Синхронные двигатели в промышленности обычно применяют при единичных мощностях свыше 300 кВт, при меньших мощностях обычно применяется более простой (и надежный) асинхронный двигатель с короткозамкнутым ротором.

Генераторный режим

Обычно синхронные генераторы выполняют с якорем, расположенным на статоре, для удобства отвода электрической энергии. Поскольку мощность возбуждения невелика по сравнению с мощностью, снимаемой с якоря (0,3...2%), подвод постоянного тока к обмотке возбуждения с помощью двух контактных колец не вызывает особых затруднений. Принцип действия синхронного генератора основан на явлении электромагнитной индукции; при вращении ротора магнитный поток, создаваемый обмоткой возбуждения, сцепляется поочередно с каждой из фаз обмотки статора, индуцируя в них ЭДС. В наиболее распространенном случае применения трехфазной распределенной обмотки якоря в каждой из фаз, смещенных друг относительно друга на 120 градусов, индуцируется синусоидальная ЭДС. Соединяя фазы по стандартным схемам «треугольник» или «звезда», на выходе генератора получают трехфазное напряжение, являющееся общепринятым стандартом для магистральных электросетей.

Частота индуцируемой ЭДС [Гц] связана с частотой вращения ротора [об/мин] соотношением:

,

где — число пар полюсов ротора.

Часто синхронные генераторы используют вместо коллекторных машин для генерации постоянного тока, подключая их обмотки якоря к трехфазным выпрямителям. Разновидности синхронных машин

Гидрогенератор — явнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от гидравлической турбины (при низких скоростях вращения 50-600 об/мин). Турбогенератор — неявнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от паровой или газовой турбины при высоких скоростях вращения ротора (6000 (редко), 3000, 1500 об/мин.)

Синхронный компенсатор — синхронный двигатель, предназначенный для выработки реактивной мощности, работающий без нагрузки на валу (в режиме холостого хода); при этом по обмотке якоря проходит практически только реактивный ток. Синхронный компенсатор может работать в режиме улучшения коэффициента мощности или в режиме стабилизации напряжения. Дает ёмкостную нагрузку.

Машина двойного питания (в частности АСМ) — синхронная машина с питанием обмоток ротора и статора токами разной частоты, за счёт чего создаются несинхронные режимы работы Ударный генератор — синхронный генератор (как правило, трёхфазного тока), предназначенный для кратковременной работы в режиме короткого замыкания (КЗ).

Также существуют безредукторные, шаговые, индукторные, гистерезисные, бесконтактные синхронные двигатели.

2. УСТРОЙСТВО СИНХРОННЫХ ГЕНЕРАТОРОВ

Статор. Статор синхронного генератора, как и других машин переменного тока, состоит из сердечника, набранного из листов электротехнической стали, в пазах которого укладывается обмоткапеременного тока,

истанины — чугунного или сварного из листовой стали кожуха.

Ввыштампованные на внутренней поверхности сердечника пазы укладывается обмотка статора. Статорная обмотка синхронного генератора состоит из трех фазных обмоток и ее выполняют потому же принципу, что и статорную обмотку асинхронного двигателя. Обмотка статора выполняется из секций, изготовленных обычно из медных проводников круглого или прямоугольного сечения.

Изоляция обмотки выполняется особо тщательно, так как машина работает обычно при высоких напряжениях. В качестве изоляции применяют миканит и миканитовую ленту.

Ротор. Роторы синхронных машин по конструкции делятся на два типа: явнополюсные : (т. е. с явно выраженными полюсами) и неявнополюсные (т. е. с неявно выраженными полюсами). На рис. 269 показаны схемы устройства синхронных генераторов с явнополюсным и неявнополюсным роторами.

Та или иная конструкция ротора диктуется соображениями механической прочности. У современных генераторов, вращающихся от быстроходных двигателей (паровая турбина), окружная скорость ротора может достигать 100—160 м/сек. Поэтому быстроходные генераторы имеют неявнополюсный ротор. Скорость вращения быстроходных генераторов составляет 3000 об/мин и 1500 об/мин.

Явнополюсный ротор представляет собой стальную поковку. . К ободу ротора прикрепляются полюсы, на которые надеваются катушки возбуждения, соединяемые последовательно между собой. Концы обмотки возбуждения присоединяются к двум кольцам, укрепленным на валу ротора. На кольца накладываются щетки, к которым присоединяется источник постоянного напряжения. На рис. 270 показан внешний вид явнополю с- ного ротора. Обычно постоянный ток для возбуждения ротора дает генератор постоянного тока, сидящий на одном валу с ротором и называемый

возбудителем.

 

 

 

 

 

 

 

 

 

Имеются также

синхронные генераторы

с

самовозбуждением Постоянный

ток

для

возбуждения

ротора

получается

с

помощью полупроводниковых выпрямителей,

подключаемых к обмотке статора генератора. В

первый момент

слабое

поле остаточного

магнетизма вращающегося ротора индуктирует в обмотке статора незначительную переменную э.

д. с. Селеновые выпрямители, подключенные

к переменному напряжению, дают постоянный ток, который усиливает поле ротора, и напряжение генератора увеличивается.

 

 

3 ВОПРОС. УСТРОЙСТВА СИНХРОННЫХ ДВИГАТЕЛЕЙ.

Синхронные машины независимо от назначения их использования состоят из двух основных частей: неподвижного статора и вращающегося внутри него ротора. Ротор и статор разделены воздушным зазором. Статор трехфазного синхронного электродвигателя аналогичен статору трехфазного асинхронного двигателя и содержит шихтованный цилиндрический сердечник с пазами на внутренней поверхности, в которых располагаются фазы трехфазной обмотки статора (рис. 2.132). Концы обмотки статора выведены на клеммную панель.

Ротор синхронного двигателя представляет собой электромагнит постоянного тока, который образует магнитное поле, вращающееся вместе с ротором. На роторе располагается обмотка возбуждения, концы которой через специальные кольца на роторе и неподвижные графитовые щетки подсоединены к источнику постоянного тока, называемому возбудителем.

Роторы синхронного двигателя бывают двух типов: с явно выраженными и неявно выраженными полюсами.

Роторы с явно выраженными полюсами (рис. 2.133) применяются в сравнительно тихоходных электродвигателях, число оборотов которых не превышает 1000 об/мин. Такие роторы, например, приводятся в действие тихоходными водяными турбинами ГЭС. На полюсах такого ротора размещаются катушки обмотки возбуждения. У синхронных двигателей с таким ротором витки пусковой короткозамкнутой обмотки типа «беличья клетка» закладываются в тело полюсов и по торцам замыкаются кольцами.

Ротор с неявно выраженными полюсами обладает повышенной динамической прочностью, так как выполняется из цельной стальной поковки цилиндрической формы (рис. 2.134). На внешней поверхности поковки фрезеруются пазы, в которые закладывается обмотка возбуждения.

Необходимо отметить следующее. Синхронные двигатели проектируют и изготавливают так, чтобы количество полюсов магнитного поля ротора и поля, создаваемого обмоткой статора, было одинаковым. Поперечное сечение явнополюсного и неявнополюсного ротора с обмоткой возбуждения показано на рис. 2.135.

Условные графические обозначения синхронных двигателей с неявно выраженными полюсами приведен на рис. 2.136, а, с явно выраженными полюсами — на рис. 2.136, б.

Рис.2.135. Поперечное сечение явнополюсного (а) и неявнополюсного (б) роторов: 1 — сердечник; 2 — обмотка возбуждения.

Рис.2.136. Условные обозначения на схемах неявнополюсной (а) и явнополюсной (б) синхронной машины.

Рис.2.132. Общий вид статора синхронной машины.

Рис.2.133. Устройство явнополюсного ротора.

Рис.2.134. Общий вид неявнополюсного ротора.

4 ПОНЯТИЕ О РЕАКЦИИ ЯКОРЯ СИНХРОННОГО ГЕНЕРАТОРА

При холостом ходе генератора в машине имеется только магнитный поток ротора . При нагрузке, кроме потока ротора, появляется мдс статора и поток статора , который вращается с той же ско-

ростью, что и ротор. Воздействие мдс статора на мдс ротора называется реакцией якоря. Следствием этого воздействия является изменение результирующего потока и результирующейэдс статора, а следовательно, потока и результирующей эдс статора.

Изучим электромагнитные реакции якорной обмотки при активной, индуктивной и ёмкостной нагрузках (рис. 2.15–2.17).

Чисто активная нагрузка. Для момента времени, изображённого на рис. 2.15, максимальная эдс будет в фазе А, так как проводники этой фазы в данный момент находятся под полюсами, т. е. на продольной оси dd. В этот момент эдс в других фазах будет иметь величину и направление, соответствующие звезде эдс на рис. 2.15, а.

Так как при чисто активной нагрузке , то векторы токов во всех фазах будут совпадать с векторами соответствующих эдс. Направление токов в обмотках на чертеже поперечного сечения машины (рис. 2.15, а) будет такое же, как и эдс. По правилу буравчика для статорной обмотки определяется направление результирующего потока якоря. Он замыкается по поперечной оси ротора qq. Последовательность всех электромагнитных процессов, вызывающих реакцию якоря, может быть представлена следующей схемой:

, (2.23)

где

поперечный ток статора (ток статора, создающий поперечную реакцию якоря);

,

поперечная мдс и поперечный поток реакции якоря;

поперечная эдс реакции якоря. Векторная диа-

грамма по этой схеме представлена на рис. 2.15. На векторной диаграмме условно показан ротор, продольная ось которого совмещена с векторами

и

. Векторы эдс

и

отстают от векторов, соз-

дающих их потоки, на угол

.

 

 

 

 

 

 

а

б

Рис. 2.15. Реакция якоря при чисто активной нагрузке: а – векторная диаграмма эдс и направление токов в обмотке ротора; б – веторная диграмма действия мдс и поперечного потока при реакции якоря

Итак, при чисто активной нагрузке мдс реакции якоря является поперечной . На обегающей части полюса ротора она действует согласно с мдс ротора, а на набегающей – встречно, соответственно увеличивая магнитную индукцию в воздушном зазоре под полюсами.

Чисто индуктивная нагрузка. При чисто индуктивной нагрузке ток статора

отстаёт от эдс

на угол

, как это показано на звезде эдс и токов (рис. 2.16).

Рис. 2.16. Реакция якоря при чисто индуктивной нагрузке: а – направление ток в обмотке ротора; б – определение максимального значения мдс; в – векторная диаграмма эдс, направление токов в обмотке ротора и поперечного потока при реакции якоря

Максимальная эдс в момент, соответствующий рис. 2.16, а, будет также в проводниках фазы А, однако ток в этой фазе . Направление тока в фазах В и C и результирующей мдс определяем как и в предыдущем случае. Результирующая мдс реакции якоря и поток действуют по продольной оси dd навстречу потоку ротора (рис. 2.16, б). Последовательность электромагнитных процессов

 

 

 

 

,

(2.24)

где

ток статора, создающий продольную реакцию (продольный ток якоря);

и

соответственно продольная мдс и продольный поток реакции якоря;

продольная эдс реакции якоря. Век-

торная диаграмма по этой схеме представлена на рис. 2.16, в.

 

 

 

 

Чисто ёмкостная нагрузка. При ёмкостной нагрузке ток якоря I опережает эдс на угол , поэтому ток в фазах статора по сравнению с предыдущим случаем изменяет своё направление на обратное (рис. 2.17, а). Поток реакции якоря будет также замыкаться по продольной оси, но действовать согласно с потоком ротора.

На рис. 2.17, б представлены кривые мдс и векторная диаграмма при ёмкостной нагрузке. Как видим на рисунке, при чисто ёмкостной нагрузке мдс реакции якоря является продольной и намагничивающей

.

б

а

в

Рис. 2.17. Реакция якоря при чисто ёмкостной нагрузке: а – направление ток в обмотке ротора; б – определение максимального значения мдс; в – векторная диаграмма эдс, направление токов в обмотке ротора и поперечного потока при реакции якоря

Общий

случай

нагрузки. При

смешанной

нагрузке

генератора мдс реакции

якоря

будет

действовать

частично

по

продольной

и

частично

по

поперечной

оси.

У явнополюсного генератора вектор мдс

, направленный по току статора I (рис. 2.17, а), раскладываем на составляющие – продольную и поперечную:

 

 

 

 

 

 

 

;

 

.

(2.25)

 

 

 

 

 

 

 

 

 

 

 

Аналогично мдс раскладываем на продольную и поперечную составляющие ток статора:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

;

 

.

 

(2.26)

Действие реакции якоря может быть изображено следующей схемой (рис. 2.18).

Рис. 2.18. Действие реакции якоря

Вобщем случае нагрузки реакцию якоря рассматривают как реакцию при чисто активной и чисто реактивной нагрузках.

2.5.Метод двух реакций

Вследствие воздействия мдс составляющих реакции якоря и на мдс в СГ устанавливается результирующая мдс F, которая создаёт результирующую эдс Е. Это можно выразить следующей схемой:

Однако количественный учёт действия реакции якоря удобней производить так: определить эдс от каждой составляющей мдс и затем, геометрически суммируя их, найти результирующую эдс Е, т. е.

 

Этот принцип и положен в основу метода двух реакций. Мдс

и

вследствие неравномерного воздушного пространства обусловливают несинусоидальное распределение магнитной индукции.

 

На рис. 2.19, б показаны кривые пространственного распределения продольной и поперечной мдс реакции якоря

и

, и магнитной индукции реакции якоря

и

. Кривые индукций опреде-

лены по закону магнитной цепи. Для любой точки на расточке статора

 

 

 

 

 

 

 

 

 

 

 

 

,

(2.27)

где

– магнитное сопротивление трубки поля в зазоре со средним сечением в единицу площади.

 

 

 

 

Рис. 2.19. Реакция якоря в общем случае нагрузки

Площадь, ограниченная кривой магнитной индукции (на рисунке заштрихована) пропорциональна продольному потоку реакции якоря (рис. 2.19, б) и поперечному (рис. 2.19, в). Несинусоидаль-

ную кривую магнитной индукции и раскладываем в гармонический ряд. Кривые первой гармоники магнитной индукции и представляют собой распределение индукции при эквивалент-

ном равномерном воздушном зазоре. Таким образом, несинусоидальное распределение магнитной индукции в воздушном зазоре заменяется синусоидальным. Так как в любой точке зазора и , то певые гармоники мдс и , создающие индукции и , будут меньше действительных: и , т. е.

;

(2.28)

,

(2.29)

где и – соответственно продольный и поперечный коэффициенты формы поля реакции якоря.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]