Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Далбанбай Амантай / методы изготовления углеродных наномембран.docx
Скачиваний:
35
Добавлен:
13.03.2015
Размер:
1.09 Mб
Скачать

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального образования

“национальный исследовательский ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ”

Наименование института – Институт Физики Высоких Технологий

Наименование направления – Материаловедение и технологии материалов

Наименование кафедры – Наноматериалов и Нанотехнологий

Изготовление углеродных наномембран

Реферат по дисциплине «Технологические процессы создания наноструктурных материалов»

Студент гр. 4БМ12 _________________ А. Далбанбай

(подпись)

­­­­­­­­­­­­ _________________

(дата)

Преподаватель _________________ А.Ю. Годымчук

(подпись)

_________________

(дата)

Томск 2012

Введение

Под мембраной обычно подразумевают тонкую перегородку, разделяющую две среды и выполняющую определенную функцию. Наиболее известны мембраны, имеющие пористую структуру и способные пропускать одни вещества, задерживая другие.

Искусственные мембраны могут быть симметричными однослойными, пронизанными системой соединяющихся однородных пор, и асимметричными двух- или многослойными, представляющими собой крупнопористую высокопроницаемую подложку-перегородку, на которую нанесен тонкий мелкопористый слой (или несколько таких слоев). Мембраны изготавливают из стекла, металла, керамики, полимеров в виде пленок, пластин, трубок и полых нитей.

Наномембранами называют мембраны, которые содержат поры диаметром в доли микрона и менее. В частности, материалы, в которых размер пор строго контролируем и составляет от 2 до 50 нм, называются мезопористыми молекулярными ситами. Мелкие поры способны задерживать очень малые твердые частицы, а также микробы, вирусы, отдельные клетки и даже молекулы. В настоящее время наномембраны эффективно используют для глубокой очистки воздуха и газов, питьевой воды и других жидкостей от твердых частиц и микроорганизмов. Особое применение наномембраны находят в медицине. С помощью них можно выделять вирусы и белки, проводить гемодиализ - разделять компоненты крови, стерилизовать растворы (путем отфильтровывания микроорганизмов), выполнять микробиологический анализ воды. Интересное потенциальное применение связано с биоимплантами. Клеточную структуру имплантата можно изолировать от остального организма замкнутой наномембраной. Тогда обмен между имплантатом и организмом необходимыми веществами будет осуществляться через нанопоры, а антитела, разрушающие инородные клетки, не смогут проникнуть через мембранный барьер.

Современный способ получения высокоэффективных наномембран - облучение сплошных полимерных пленок ускоренными тяжелыми ионами или продуктами распада радиоактивных элементов. Это так называемые трековые нано-мембраны. Высокоэнергетические частицы, пролетая через слой полимера, оставляют треки - сквозные каналы диаметром около 10 нм, заполненные продуктами разрушения (деполимеризации) материала. В результате последующей обработки растворителем (процесс травления) на месте каналов образуются поры, диаметр которых можно регулировать в широком интервале от 30 до 1000 нм.

Существует много других методов получения наномембран. Мембраны на основе оксида алюминия с упорядоченными нанопорами создают анодным окислением поверхности алюминиевой пластины. Нанопоры в пленке кремния образуются в результате кратковременной термической обработки сплошного слоя аморфного кремния. Наномембраны также формируют путем полимеризации органического соединения из раствора или в присутствии поверхностно-активного вещества. В результате ассоциации молекул последнего образуются цилиндрические каналы диаметром в несколько нанометров, пронизывающие насквозь полученную пленку. Ионообменные мембраны получают из ионообменных полимеров (смол), а также из некоторых неорганических соединений, обладающих ионной проводимостью (диоксид циркония, стабилизированный оксидом иттрия, оксид висмута и др.).

Когда размер пор мембраны в нанометровом диапазоне, транспортные поведение жидкости, в которой не может быть описано с традиционной гидродинамической модели. Теоретические и экспериментальные исследования показали, что скорость потока жидкости в нанопоры гораздо выше, чем ожидалось [3]. полых трубчатых наноструктур углерода, представляет собой идеальное экспериментальной платформой для изучения поведения жидкости в нанопоре. Углеродные нанотрубки являются трубчатым структурам из атомов углерода, которой одномерно закатаны графитовый лист, специальные и уникальные физические и химические свойства на такие структурах, были в центре внимания ученых с момента открытия. Однако, В прошлом, большинство исследований сосредоточено на электрические, оптические и механические свойства углеродных нанотрубок, углеродных нанотрубок для молекулярного транспорта только в последние годы рост интерес.

Гидрофобность углеродных нанотрубок и в атомном уровне гладкая внутренняя поверхность может значительно сокращает, силу всасывания и силу трения когда жидкость проходит через трубок [4]. Экспериментальные исследования подтвердили, что скорость молекул воды в транспортной углеродных нанотрубок довольно близко к скорости белковой мембраны [5]. Результаты молекулярно-динамического моделирования показывают, что скорость перемещение жидкости в углеродных нанотрубках является «ограниченном». Это ограничение уменьшает свободную энергию жидкости до 40%, таким образом рост скорость передачи жидкости в внутренний диаметр углеродных нанотрубок от 104 до 106 раз повышает [6]. Кроме того, диаметр углеродных нанотрубок можно контролировать непрерывном регулированием размера частиц катализатора в процессе CVD. рост контроль находится в манометровом масштабе [7]; Углеродные нанотрубки также обладают хорошими механическими свойствами, химической стабильностью, высоким соотношением сторон и высокой удельной поверхностью. Все эти особенности, даюет углеродные нанотрубки в применениях нанофильтрации мембраны уникальные преимущества, поэтому вызвали большой интерес.

Новая наномембрана на основе углеродных нанотрубок кроме того, чтобы имеет высокую производительность передачи, еще обладает высокой химической селективностью после химической обработки [8,9], таким образом ожидаются получать применения в био-медицине, в военном деле, и в пищевом производстве, осуществляет разделить микроорганизмы, наночастицы или биологическую высокою молекулу.

Пока использование углеродных нанотрубок подготовки нано мембраны в основном сосредоточены на два аспекта: один основан на неупорядоченных углеродных нанотрубок, таких как Баки мембран бумаги и неупорядоченных углеродных нанотрубок / полимер смешанные мембраны, другой основе на вертикально ориентированных углеродных нанотрубок наномембраны. Разность этих двух мембран заключается в расположении углеродных нанотрубок. В неупорядоченной наномембран на основе углеродных нанотрубок, углеродных нанотрубок, беспорядочным образом, спутанность сознания сетки типа пространственной структуры расположены с образованием плотной упаковки в промежутке между углеродных нанотрубок в качестве канала фильтра, или углеродных нанотрубок смешивается полимерные мембраны, отверстия нанотрубок в качестве канала фильтра. Нанофильтрации мембран в вертикальном расположении углеродных нанотрубок, углеродных нанотрубок перпендикулярно к росту ориентации подложки разрыв трубы инфраструктуры наполнен материалом полимерной матрицы или керамические, углеродные нанотрубки внутреннего отверстия формирования канала фильтра. Это реферат будет сосредоточен на обоих типах структуры наномембраны, рассмотрим несколько типичных методов подготовки наномембраны и ее преимущества и недостатки.