Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2 курс / Гистология / КОЛИЧЕСТВЕННАЯ_ОЦЕНКА_ИЗМЕНЕНИЙ_В_МИКРОСТРУКТУРЕ_ПЕРИНЕЙРОНАЛЬНЫХ

.pdf
Скачиваний:
0
Добавлен:
23.03.2024
Размер:
5.42 Mб
Скачать

37.Hess, A. J. Comp. Neurol. 1955, № 102. – P. 65–73

38.Rambourg, A. et al. Anat. Rec. 1966, № 154. – P. 41–72

39.Hess, A. Arch. Neurol. Psychiat. 1956, № 73. – P. 380–387

40.Van Harreveld, A. Steiner J. J., Cell Sci. 1970, № 6. – P. 793–805

41.Nicholson, C., Syková, E. Trends Neurosci. 1998, № 21. – P. 207–215

42.Hockfield, S., McKay, R.D. Proc. Natl. Acad. Sci. U. S. A. 1983, № 80.

P. 5758–5761

43.Atoji, Y. et al. J. Neurocytol. 1989, № 18.– P. 599–610

44. Lüth, H–J. et al. J. Neurocytol. 1992, № 21 – P. 211–221

45.Carulli, D. The composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components // D. Carulli, K.E. Rhodes, D.J. Brown, T.P. Bonnert, S.J. Pollack, K. Oliver, P. Strata, J.W. Fawcett // J. Comp. Neurol. – 2006. – V. 494, I. 4. – P. 559–577. doi: 10.1002/cne.20822

46.Carulli, D. Upregulation of aggrecan, link protein 1 and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum // D. Carulli, S.S. Deepa, J.W. Fawcett // J. Comp. Neurol. – 2007. – V. 501, I. 1. – P. 83–94. doi: 10.1002/cne.21231

47.Deepa, S.S. Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net–associated proteoglycans // S.S. Deepa, D. Carulli, C. Galtrey, K. Rhodes, J. Fukuda, T. Mikami, K. Sugahara, J.W. Fawcett // J. Biol. Chem. – 2006. – V. 281, I 26. – P. 17789–17800. doi:

10.1074/jbc.M600544200

48.Dityatev, A. Activity–dependent formation and functions of chondroitin sulfate–rich extracellular matrix of perineuronal nets // A. Dityatev, G. Brückner, G. Dityateva, J. Grosche, R. Kleene, M. Schachner // Dev. Neurobiol. – 2007. – V. 67, I 5. – P. 570–588. doi: 10.1002/dneu.20361

49.Brückner, G. Aggrecan–based extracellular matrix is an integral part of the human basal ganglia circuit // G. Brückner, Morawski, T. Arendt // Neuroscience – 2008. – V. 151, I. 2. – P. 489–504. doi: 10.1016/j.neuroscience.2007.10.033

111

https://t.me/medicina_free

50. Galtrey, C.M., Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin–R in the rat spinal cord // C.M. Galtrey, J.C. Kwok, D. Carulli, K.E. Rhodes, J.W. Fawcett // Eur. J. Neurosci. – 2008. – V 27, I. 6. – P 1373–1390. doi: 10.1111/j.1460– 9568.2008.06108.x

51.Oohira, A. Molecular interactions of neural chondroitin sulfate proteoglycans in the brain development // A. Oohira, F. Matsui, Y. Tokita, S. Yamauchi, S. Aono // Arch. Biochem. Biophys. – 2000. – V 374, I. 1. – P. 24 –34. doi: 10.1006/abbi.1999.1598

52.Bandtlow, C.E., Zimmermann, D.R. Proteoglycans in the developing brain: new conceptual insights for old proteins // Physiol. Rev. – 2000. – V. 80, I.

4.– P. 1267–1290. doi: 10.1152/physrev.2000.80.4.1267

53.Rhodes, K.E., Fawcett, J.W. Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS? // J. Anat. – 2004. – V. 204, I. 1. – P. 33– 48. doi: 10.1111/j.1469–7580.2004.00261.x

54.Asher, R.A. Neurocan is upregulated in injured brain and in cytokine–

treated astrocytes // R.A. Asher, D.A. Morgenstern, P.S. Fidler, K.H. Adcock, A. Oohira, J.E. Braistead, J.M. Levine, R.U. Margolis, J.H. Rogers, J.W. Fawcett // J. Neurosci. – 2000. – V. 20, I. 7. – P. 2427–2438. doi: 10.1523/JNEUROSCI.20– 07–02427.2000

55. Asher, R.A. Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells // R.A. Asher, D.A. Morgenstern, M.C. Shearer, K.H. Adcock, P. Pesheva, J.W. Fawcett // J. Neurosci. – 2002. – V. 22, I. 6. – P. 2225– 2236. doi: 10.1523/JNEUROSCI.22–06–02225.2002

56.Thon, N. The chondroitin sulphate proteoglycan brevican is upregulated by astrocytes after entorhinal cortex lesions in adult rats // N. Thon, C.A. Haas, U. Rauch, T. Merten, R. Fassler, M. Frotscher, T. Deller // Eur. J. Neurosci. – 2000. – V. 12, I. 7. – P. 2547–2558. doi: 10.1046/j.1460–9568.2000.00109.x

57.Jones, L.L. NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte

112

https://t.me/medicina_free

progenitors // L.L. Jones, Y. Yamaguchi, W.B. Stallcup, M.H. Tuszynski // J. Neurosci. – 2002. – V. 22, I. 7. – P. 2792–2803. doi: 10.1523/JNEUROSCI.22– 07–02792.2002

58.Moon, L.D. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC // L.D. Moon, R.A. Asher, K.E. Rhodes, J.W. Fawcett // Nat. Neurosci. – 2001. – V. 4, I. 5. – P. 465– 466. doi: 10.1038/87415

59.Bradbury, E.J. Chondroitinase ABC promotes functional recovery after spinal cord injury // E.J. Bradbury, L.D. Moon, R.J. Popat, V.R. King, G.S. Bennett, P.N. Patel, J.W. Fawcett, S.B. McMahon // Nature – 2002. – V. 416, I. 6881. – P. 636 – 640. doi: 10.1038/416636a

60.Corvetti, L., Rossi, F. Degradation of chondroitin sulfate proteoglycans induces sprouting of intact purkinje axons in the cerebellum of the adult rat // J. Neurosci. – 2005. – V. 25, I. 31. – P. 7150 –7158. doi: 10.1523/JNEUROSCI.0683–05.2005

61.Chelyshev, Y.A. Extracellular Matrix in Neural Plasticity and Regeneration // Y.A. Chelyshev, I.M. Kabdesh, Y.O. Mukhamedshina // Cell. Mol. Neurobiol. – 2022 – V. 42, I. 3. – P. 647–664. doi: 10.1007/s10571–020–00986–0. Epub 2020 Oct 31

62.Tropea, D. Synergistic effects of brain–derived neurotrophic factor and chondroitinase ABC on retinal fiber sprouting after denervation of the superior colliculus in adult rats // D. Tropea, M. Caleo, L. Maffei // J. Neurosci. – 2003. – V. 23, I 18. – P. 7034 –7044. doi: 10.1523/JNEUROSCI.23–18–07034.2003

63.García–Alías, G. Chondroitinase ABC treatment opens a window of opportunity for task–specific rehabilitation // G. García–Alías, S. Barkhuysen, M. Buckle, J.W. Fawcett // Nat. Neurosci. – 2009. – V. 12, I. 9. – P 1145–1151. doi: 10.1038/nn.2377

64.Massey, J.M. Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury // J.M. Massey, C.H. Hubscher, M.R. Wagoner, J.A. Decker, J. Amps,

113

https://t.me/medicina_free

J. Silver, S.M. Onifer // J. Neurosci. – 2006 – V. 26, I. 16. – P. 4406–4414. doi: 10.1523/JNEUROSCI.5467–05.2006

65. Kwok, J.C.F. In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity // J.C.F. Kwok, D. Carulli, J.W. Fawcett // J. Neurochem. – 2010. – V. 114, I. 5. – P. 1447– 1459, doi: 10.1111/j.1471–4159.2010.06878.x

66.Carulli, D. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity // D. Carulli, T. Pizzorusso, J.C.F. Kwok, E. Putignano, A. Poli, S. Forostyak, M.R. Andrews, S.S. Deepa, T. Glant, J.W. Fawcett // Brain – 2010. – V. 133 (Pt 8) – P. 2331–2347. doi: 10.1093/brain/awq145

67.Carulli, D. Modulation of semaphorin3A in perineuronal nets during structural plasticity in the adult cerebellum // D. Carulli, S. Foscarin, A. Faralli, E. Pajaj, F. Rossi // Mol. Cell. Neurosci. – 2013. – V. 57. – P. 10–22. doi: 10.1016/j.mcn.2013.08.003

68.Beurdeley, M. Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex // M. Beurdeley, J. Spatazza, H.H.C. Lee, S. Sugiyama, C. Bernard, A.A Di Nardo, T.K. Hensch, A. Prochiantz // J. Neurosci. –

2012. – V. 32, I. 27. – P. 9429–9437. doi: 10.1523/JNEUROSCI.0394–12.2012 69. Vo, T. The chemorepulsive axon guidance protein semaphorin3A is

a constituent of perineuronal nets in the adult rodent brain // T. Vo, D. Carulli, , E.M.E. Ehlert, J.C.F. Kwok, G. Dick, V. Mecollari, E.B. Moloney, G. Neufeld, F. de Winter, J.W. Fawcett, J. Verhaagen // Mol. Cell. Neurosci. – 2013. – V. 56. – P. 186–200. doi: 10.1016/j.mcn.2013.04.009

70. Milev, P. High affinity binding and overlapping localization of neurocan and phosphacan/protein–tyrosine phosphatase–ζ/β with tenascin–R, amphoterin, and the heparin–binding gowth–associated molecule // P. Milev, A. Chiba, M.

Häring, H. Rauvala, M. Schachner, B. Ranscht, R.K. Margolis, R.U. Margolist // J. Biol. Chem. – 1998. – V. 273, I. 12. – P. 6998–7005. doi: 10.1074/jbc.273.12.6998

114

https://t.me/medicina_free

71.Nandini, C.D. Structural and functional characterization of oversulfated chondroitin sulfate/dermatan sulfate hybrid chains from the notochord of hagfish. Neuritogenic and binding activities for growth factors and neurotrophic factors // C.D. Nandini, T. Mikami, M. Ohta, N. Itoh, F. Akiyama–Nambu, K. Sugahara // J. Biol. Chem. – 2004. – V. 279, I. 49. – P. 50799–50809. doi: 10.1074/jbc.M404746200

72.Kanato, Y. Complex formation of a brain–derived neurotrophic factor and glycosaminoglycans. // Y. Kanato, S. Ono, K. Kitajima, C. Sato // Biosci. Biotechnol. Biochem. – 2009. – V. 73, I. 12. – P. 2735–2741. doi: 10.1271/bbb.90637

73.McRae, P.A., Porter, B.E. The perineuronal net component of the extracellular matrix in plasticity and epilepsy // Neurochem. Int. – 2012. – V. 61, I.

7.– P. 963–792. doi: 10.1016/j.neuint.2012.08.007

74.McRae, P.A. Persistent decrease in multiple components of the perineuronal net following status epilepticus // P.A. McRae, E. Baranov, S.L. Rogers, B.E. Porter // Eur. J. Neurosci. – 2012. – V. 36, I. 11. – P. 3471–3482. doi: 10.1111/j.1460–9568.2012.08268.x

75.Mauney, S.A. Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia // S.A. Mauney, K.M. Athanas, H. Pantazopoulos, N. Shaskan, E. Passeri, S. Berretta, Tsung–Ung W Woo // Biol. Psychiatry. – 2013. – V. 74, I. 6. – P. 427–435. doi:

10.1016/j.biopsych.2013.05.007

76.Hsieh, T–H. Trajectory of Parvalbumin Cell Impairment and Loss of Cortical Inhibition in Traumatic Brain Injury // T–H. Hsieh, H.H.C. Lee, M.Q. Hameed, A. Pascual–Leone, T.K. Hensch, A.Rotenberg // Cereb. Cortex. – 2017. –

V.27, I. 12. – P. 5509–5524. doi: 10.1093/cercor/bhw318

77.Hsieh, T–H. Relationship of mechanical impact magnitude to neurologic dysfunction severity in a rat traumatic brain injury model // Tsung–Hsun Hsieh, Jing–Wei Kang, Jing–Huei Lai, Ying–Zu Huang, Alexander Rotenberg, Kai–Yun Chen , Jia–Yi Wang, Shu–Yen Chan, Shih–Ching Chen, Yung–Hsiao Chiang,

115

https://t.me/medicina_free

Chih–Wei Peng // PLoS One – 2017. – V. 12, I. 5. – e0178186. doi:

10.1371/journal.pone.0178186

78.Härtig, W. Damaged Neocortical Perineuronal Nets Due to Experimental Focal Cerebral Ischemia in Mice, Rats and Sheep // W. Härtig, B. Mages, S. Aleithe, B. Nitzsche, S. Altmann, H. Barthel, M. Krueger, D. Michalski // Front. Integr. Neurosci. – 2017 – V. 11, I. 15. doi: 10.3389/fnint.2017.00015

79.Härtig, W. Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations // W. Härtig , A. Derouiche, K. Welt, K. Brauer, J.

Grosche, M. Mäder, A. Reichenbach, G. Brückner // Brain Res. – 1999. – V. 842, I. 1. – P. 15–29. doi: 10.1016/s0006–8993(99)01784–9

80.Härtig, W. Perineuronal nets in the rat medial nucleus of the trapezoid body surround neurons immunoreactive for various amino acids, calcium–binding proteins and the potassium channel subunit Kv3.1b. // W. Härtig, A. Singer, J. Grosche, K. Brauer, O.P. Ottersen, G. Brückner // Brain Res. – 2001. – V. 899, I. 1–2. – P. 123–33. doi: 10.1016/s0006–8993(01)02211–9

81.Härtig, W. Hyperphosphorylated protein tau is restricted to neurons devoid of perineuronal nets in the cortex of aged bison // W. Härtig, C. Klein, K. Brauer, K.F. Schüppel, T. Arendt, V. Bigl, G. Brückner // Neurobiol. Aging. –

2001. – V. 22, I. 1. – P. 25–33. doi: 10.1016/s0197–4580(00)00179–2

82. Hrabetová, S. Calcium diffusion enhanced after cleavage of negatively charged components of brain extracellular matrix by chondroitinase ABC // S

Hrabetová, D. Masri, L. Tao, F. Xiao, C. Nicholson // J. Physiol. – 2009. – V. 587 (Pt 16) – P. 4029–4049. doi: 10.1113/jphysiol.2009.170092

83. Chen, Z.J. Oligodendrocyte precursor cells: reactive cells that inhibit axon growth and regeneration // Z.J. Chen, M. Negra, A. Levine, Y. Ughrin, J.M. Levine // J. Neurocytol. – 2002. – V. 31, I. 6–7. – P. 481–495. doi: 10.1023/a:1025791614468

116

https://t.me/medicina_free

84.Göritz, C.A pericyte origin of spinal cord scar tissue // C. Göritz, D.O Dias, N. Tomilin, M. Barbacid, O. Shupliakov, J. Frisén // Science – 2011. – V. 333, I. 6039. – P. 238–242. doi: 10.1126/science.1203165

85.Fawcett, J. W., Asher, R. A. The glial scar and central nervous system repair // Brain Res. Bull. – 1999. – V. 49, I. 6. – P. 377–391. doi: 10.1016/s0361–

9230(99)00072–6

86.Silver, J., Miller, J.H., Regeneration beyond the glial scar // Nat. Rev. Neurosci. – 2004. – V. 5, I. 2. – P. 146–156. doi: 10.1038/nrn1326

87.Jones, L.L. The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury // L.L. Jones, R.U. Margolis, M.H. Tuszynski // Exp. Neurol. – 2003. – V. 182, I. 2.

P. 399–411. doi: 10.1016/s0014–4886(03)00087–6

88.Lemons, M.L. Intact aggrecan and fragments generated by both aggrecanse and metalloproteinase–like activities are present in the developing and adult rat spinal cord and their relative abundance is altered by injury // M.L. Lemons, J.D. Sandy, D.K. Anderson, D.R. Howland // J. Neurosci. – 2001. – V. 21, I. 13. – P. 4772–4781. doi: 10.1523/JNEUROSCI.21–13–04772.2001

89.Lemons, M.L. Intact aggrecan and chondroitin sulfate–depleted aggrecan core glycoprotein inhibit axon growth in the adult rat spinal cord // M.L. Lemons, J.D. Sandy, D.K. Anderson, D.R. Howland // Exp. Neurol. – 2003. – V. 184, I. 2. –

P.981–990. doi: 10.1016/S0014–4886(03)00383–2

90.Harris, N.G. Traumatic brain injury results in disparate regions of chondroitin sulfate proteoglycan expression that are temporally limited // N.G. Harris, S.T. Carmichael, D.A. Hovda, R.L. Sutton // J. Neurosci. Res. – 2009. – V. 87, I. 13. – P. 2937–2950. doi: 10.1002/jnr.22115

91.Waselle, L. Differential proteoglycan expression in two spinal cord regions after dorsal root injury // L. Waselle, X. Quaglia, A. D. Zurn // Mol. Cell. Neurosci. – 2009. – V. 42, I. 4. – P. 315–327. doi: 10.1016/j.mcn.2009.08.004

92.Gilbert, R.J. CS–4, 6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension // R.J. Gilbert, R.J. McKeon, A. Darr, A.

117

https://t.me/medicina_free

Calabro, V.C. Hascall, R.V. Bellamkonda // Mol. Cell. Neurosci. – 2005. – V. 29,

I.4. – P. 545–558. doi: 10.1016/j.mcn.2005.04.006

93.Properzi, F. Chondroitin 6–sulfate synthesis is up–regulated in injured CNS, induced by injury–related cytokines and enhanced in axon–growth inhibitory glia // F. Properzi, D. Carulli, R.A. Asher, E. Muir, L.M. Camargo, T.H. van Kuppevelt, G.B. ten Dam, Y. Furukawa, T. Mikami, K. Sugahara, T. Toida, H.M. Geller, J.W. Fawcett // Eur. J. Neurosci. – 2005. – V. 21, I 2. – P. 378–390. doi: 10.1111/j.1460–9568.2005.03876.x

94.Wang, H. Chondroitin–4–sulfation negatively regulates axonal guidance and growth // H. Wang, Y. Katagiri, T.E. McCann, E. Unsworth, P. Goldsmith, Zu–Xi Yu, Fei Tan, L. Santiago, E.M. Mills, Yu Wang, A.J. Symes, H.M. Geller //

J.Cell Sci. – 2008. – V. 121 (Pt. 18) – P. 3083–3091. doi: 10.1242/jcs.032649

95.Rolls, A.A. disaccharide derived from chondroitin sulfate proteoglycan promotes central nervous system repair in rats and mice // A.A. Rolls, H. Avidan,

L. Cahalon, H. Schori, S. Bakalash, V. Litvak, S. Lev, O. Lider, M. Schwartz // Eur. J. Neurosci. – 2004. – V. 20, I. 8. – P. 1973–1983. doi: 10.1111/j.1460– 9568.2004.03676.x

96. Smith–Thomas, L. C. Increased axon regeneration in astrocytes grown in the presence of proteoglycan synthesis inhibitors // L.C. Smith–Thomas, J. Stevens, J. Fok–Seang, A. Faissner, J.H. Rogers, J.W. Fawcett // J. Cell. Sci. – 1995. – V. 108 (Pt. 3). – P. 1307–1315. doi: 10.1242/jcs.108.3.1307

97.Yamagata, T. Purification and characterisations of chondroitinases and chondrosulfatases // T. Yamagata, H. Saito, O. Habuchi, S. Suzuki // J. Biol. Chem. – 1968. – V. 243. – P. 1523–1535.

98.Sango, K. Phosphacan and neurocan are repulsive substrata for adhesion and neurite extension of adult rat dorsal root ganglion neurons in vitro // K. Sango, A. Oohira, K. Ajiki, A. Tokashiki, M. Horie, H. Kawano // Exp. Neurol. – 2003. –

V.182, I. 1. – P. 1–11. doi: 10.1016/s0014–4886(03)00090–6

99.Nakamae, T. Chondroitinase ABC promotes corticospinal axon growth in organotypic cocultures // T. Nakamae, N. Tanaka, K. Nakanishi, N. Kamei, H.

118

https://t.me/medicina_free

Sasaki, T. Hamasaki, K. Yamada, R. Yamamoto, Y. Mochizuki, M. Ochi // Spinal

Cord – 2009. – V. 47, I. 2. – P. 161–165. doi: 10.1038/sc.2008.74

100.McKeon, R. J. Injury–induced proteoglycans inhibit the potential for laminin–mediated axon growth on astrocytic scars // R.J. McKeon, A. Höke, J. Silver // Exp. Neurol. – 1995. – V. 136, I. 1. – P. 32–43. doi: 10.1006/exnr.1995.1081

101.Zuo, J. Degradation of chondroitin sulfate proteoglycan enhances the neurite–promoting potential of spinal cord tissue // J. Zuo, D. Neubauer, K. Dyess, T.A. Ferguson, D. Muir // Exp. Neurol. – 1998. – V. 154, I. 2. – P. 654–662. doi: 10.1006/exnr.1998.6951

102.Lemons, M.L. Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation // M.L. Lemons, D.R. Howland, D.K. Anderson // Exp. Neurol. – 1999. – V. 160, I. 1. – P. 51–65. doi: 10.1006/exnr.1999.7184

103.Yick, L.W. Axonal regeneration of Clarke’s neurons beyond the spinal

cord injury scar after treatment with chondroitinase ABC // L.W. Yic, P.T. Cheung, K.F. So, W. Wu // Exp. Neurol. – 2003. – V. 182, I 1. – P160–168. doi: 10.1016/s0014–4886(02)00052–3

104.Shields, L.B. Benefit of chondroitinase ABC on sensory axon regeneration in a laceration model of spinal cord injury in the rat // L.B. Shields, Y.P. Zhang, D.A. Burke, R. Gray, C.B. Shields // Surg. Neurol. – 2008. – V. 69, I

6.– P. 568–577. doi: 10.1016/j.surneu.2008.02.009

105.Galtrey, C.M. Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair // C.M. Galtrey, R.A. Asher, F. Nothias, J.W. Fawcett // Brain – 2007. – V. 130 (Pt. 4) – P. 926–939. doi: 10.1093/brain/awl372

106.Tester, N.J., Howland, D.R. Chondroitinase ABC improves basic and skilled locomotion in spinal cord injured cats // Exp. Neurol. – 2008. – V. 209, I. 2.

– P. 483–496. doi: 10.1016/j.expneurol.2007.07.019

119

https://t.me/medicina_free

107.Jefferson, S.C. Chondroitinase ABC promotes recovery of adaptive limb movements and enhances axonal growth caudal to a spinal hemisection // S.C. Jefferson, N.J. Tester, D.R. Howland // J. Neurosci. – 2011. – V. 31, I. 15. – P. 5710–5720. doi: 10.1523/JNEUROSCI.4459–10.2011

108.Lander, C.A. family of activity–dependent neuronal cell–surface chondroitin sulfate proteoglycans in cat visual cortex // C.A. Lander, P. Kind, M. Maleski, S. Hockfield // J. Neurosci. – 1997. – V. 17, I. 6. – P. 1928–1939. doi: 10.1523/JNEUROSCI.17–06–01928.1997

109.Pizzorusso, T. Structural and functional recovery from early monocular deprivation in adult rats // T. Pizzorusso, P. Medini, S. Landi, S. Baldini, N. Berardi, L. Maffei // Proc. Natl. Acad. Sci. USA – 2006. – V. 103, I. 22. – P. 8517–8522. doi: 10.1073/pnas.0602657103

110.Yin, Z.Q. Pre– and post–critical period induced reduction of Cat–301 immunoreactivity in the lateral geniculate nucleus and visual cortex of cats Y–

blocked as adults or made strabismic as kittens // Z.Q. Yin, S.G. Crewther, C. Wang, D.P. Crewther // Mol. Vis. – 2006. – V. 12. – P. 858–866

111.Sale, A. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition //A. Sale, J.F.M. Vetencourt, P. Medini, M.C. Cenni, L. Baroncelli, R. De Pasquale, L. Maffei // Nat. Neurosci. – 2007. – V. 10, I. 6. – P. 679–681. doi: 10.1038/nn1899

112.Gogolla, N. Perineuronal nets protect fear from erasure // N. Gogolla, P. Caroni, A. Lüthi, C. Herry // Science – 2009. – V. 325, I 5945. – P. 1258–1261. doi: 10.1126/science.1174146

113.Galtrey, C.M., Fawcett, J.W. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system // Brain Res. Rev. – 2007. – V. 54, I. 1. – P. 1–18. doi: 10.1016/j.brainresrev.2006.09.006

114.Wang, D. Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury // D. Wang, R. M. Ichiyama, R. Zhao, M.R. Andrews, J.W. Fawcett // J. Neurosci. – 2011. – V. 31, I. 25. – P. 9332–9344. doi: 10.1523/JNEUROSCI.0983–11.2011

120

https://t.me/medicina_free