Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 Нервная система.doc
Скачиваний:
49
Добавлен:
21.03.2015
Размер:
205.82 Кб
Скачать

Лекция № 2 нервная система План

  1. Значение нервной системы.

  2. Анатомическая и функциональная классификация нервной системы.

  3. Микро- и макроструктуры нервной системы. Их свойства и возрастные особенности.

  4. Нервные центры и их свойства.

  5. Координация нервных процессов. Принципы координации.

  6. Онтогенез и анатомо-физиологические особенности различных отделов ЦНС.

  1. Значение нервной системы

Нервная система является ведущей физиологической системой организма. Основными функциями нервной системы являются:

  1. быстрая и точная передача информации о состоянии внешней и внутренней среды организма,

  2. анализ и интеграция всей информации,

  3. организация адаптивного реагирования на внешние сигналы,

  4. регуляция и координация деятельности органов и систем в соответствии с конкретными условиями деятельности и изменяющимися факторами внешней и внутренней среды организма,

  5. с деятельностью высших отделов нервной системы связано осуществление психических процессов и организация целенаправленного поведения.

Функции нервной системы могут быть условно поделены на два типа: низшие и высшие. Низшая нервная деятельность представляет собой процессы регуляции всех внутренних органов и физиологических систем организма человека. Высшая нервная деятельность включает в себя те функциональные механизмы мозга, которые обеспечивают человеку адекватный контакт с окружающей средой. Высшие функции лежат в основе психической деятельности человека, но не могут быть сведены к ней.

Нервная система регулирует физиологические процессы на всех уровнях организации организма: в клетках, тканях, органах и их системах. Для одних органов нервная система обладает пусковым действием (например, для скелетной мускулатуры), для других – только изменяющим существующий уровень их функционирования (например, для сердца, сосудов).

  1. Анатомическая и функциональная классификация нервной системы

Нервная система человека на основе структурно-функциональных особенностей подразделяется на два основных отдела: центральную и периферическую нервную систему. К центральной нервной системе (ЦНС) относятся головной и спинной мозг, к периферической – все нервные волокна и нервные узлы - ганглии (скопления нервных клеток, расположенные вне ЦНС).

По функциональным свойствам нервную систему делят на вегетативную (автономную) нервную систему (осуществляет регуляцию деятельности внутренних органов и обмена веществ) и соматическую нервную систему (регулирует сокращения поперечнополосатой мускулатуры и обеспечивает чувствительность тела).

Выделение вышеназванных отделов в нервной системе условно. В действительности она представляет собой анатомически и функционально единое целое, элементарной основой которого являются нервные клетки – нейроны.

  1. Микро- и макроструктуры нервной системы. Их свойства и возрастные особенности

Нервная система образована нервной тканью, состоящей из нейронов и нейроглии. Нейрон является структурной и функциональной единицей нервной системы. Нейроны – специализированные клетки, способные принимать, обрабатывать, кодировать, передавать и хранить информацию, организовывать реакции на раздражения, устанавливать контакты с другими нейронами, клетками. Уникальной особенностью нейронов является способность генерировать электрические разряды и передавать информацию с помощью специализированных окончаний – синапсов. Нейроглия – совокупность клеточных элементов нервной ткани. Окружая со всех сторон нейроны, клетки нейроглии выполняют для них опорную, питательную, защитную и электроизолирующую функции.

В процессе постнатального развития человека значительно изменяется соотношение между глиальными и нервными клетками. У новорожденного количество нейронов выше, чем количество глиальных клеток. К 20–30 годам их соотношение становится равным (1:1), а далее сдвигается в сторону глиальных клеток. Например, у 70-летнего человека нейроны головного мозга составляют только 30 % от общего количества клеток, входящих в состав нервной ткани.

Основными физиологическими свойствами нервной ткани являются возбудимость, проводимость и лабильность, которые в свою очередь связаны с одним из самых общих свойств всего живого – раздражимостью.

Любые изменения в окружающей среде или организме называют раздражителями, процесс действия раздражителя – раздражением, а ответные изменения в деятельности клеток и целого организма – биологическими реакциями. Выделяют три группы раздражителей: физические (электричество, ионизирующее излучение, укол, удар, температура, давление и т.д.), физико-химические (изменения осмотического давления в клетках, коллоидного состояния протоплазмы клеток, содержания в протоплазме ионов водорода и т.д.) и химические (лекарственные препараты, биологически активные вещества, образующиеся в организме, гормоны, ферменты, медиаторы, яды и др.).

Физиологические раздражители делят на адекватные (к восприятию которых клетки и ткани организма приспособились в процессе своего исторического развития) и неадекватные (к восприятию которых клетки и ткани специально не приспособлены). Например, адекватным раздражителем для рецепторов кожи является давление, для рецепторов глаза – свет, для температурных – изменения температуры. Наиболее общим, адекватным и естественным раздражителем для всех клеток нашего тела является нервный импульс.

Клетки нервной ткани в процессе эволюции приспособились к быстрой ответной реакции на действие раздражителя, поэтому нервную ткань называют возбудимой, а ее способность быстро реагировать на раздражение – возбудимостью. Количественной мерой возбудимости является порог раздражения – минимальная величина раздражителя, способная вызвать ответную реакцию ткани. Возбудимость проявляется в процессах возбуждения и торможения, которые представляют собой изменение процессов обмена веществ в клетках нервной ткани. Изменение обмена веществ сопровождается передвижением через клеточную мембрану отрицательно и положительно заряженных ионов: К+, Na+,Са2+, Сl-, что вызывает изменение активности клетки. Возбуждение – процесс, способствующий осуществлению той или иной функции или деятельности организма (генерация нервного импульса, потенциала действия). Торможение – активный нервный процесс, результатом которого является прекращение или ослабление возбуждения. Эти процессы могут протекать в одном нейроне, сменяя друг друга. И возбуждение, и торможение – это активные состояния нейрона.

Покой

Возбуждение Торможение

Проводимость – способность живой ткани проводить возбуждение. Проводимость нервной ткани связана с распространением по ней процессов возбуждения. Возникнув в одной клетке, электрический (нервный) импульс легко переходит на соседние клетки и может передаваться в любой участок нервной системы.

Под лабильностью или функциональной подвижностью понимают способность возбудимой ткани отвечать максимальным числом потенциалов действия в ответ на определенную частоту раздражений. Иначе говоря, лабильность – свойство, характеризующее способность возбудимой ткани воспроизводить максимальное количество потенциалов действия в единицу времени. Нервная ткань обладает наибольшей лабильностью, у мышечной она значительно ниже, самая низкая лабильность у синапсов. Лабильность ткани в значительной степени зависит от функционального состояния этой ткани. Патологические процессы и утомление приводят к снижению лабильности нервной ткани, а систематические специальные тренировки – к ее повышению.

Строение нейронов. Нейроны представляют собой клетки, весьма разнообразные по форме. Вместе с тем общее строение нейронов не отличается от строения любой другой клетки нашего тела. В нейроне также можно выделить клеточную мембрану, ядро, ядрышко, клеточные органоиды. Особенностью в строении нейронов является: 1) большое количество клеточных отростков и 2) наличие в цитоплазме специфических образований: тигроидного вещества и нейрофибрилл.

В состав тигроидного вещества нейрона входит РНК, содержание которой увеличивается до полового созревания, а затем находится на относительно постоянном уровне (если условия существования организма остаются благоприятными). У новорожденных тигроидного вещества нет в нейронах лобной доли коры больших полушарий, но есть в структурах, обеспечивающих жизненно важные рефлексы – в спинном мозге и стволе мозга. В случае экстремальных (стрессорных) воздействий содержание РНК в тигроидном веществе уменьшается, что приводит к гибели нейрона.

Нейрофибриллы представляют собой длинные белковые молекулы, расположенные в теле и отростках нейрона и исчезающие при его длительной работе.

Размеры нейронов колеблются от 6 до 120 мкм. Количество нейронов мозга человека приближается к 1011. Функционально в нейроне выделяют следующие части: тело (сома), аксон, дендриты. Тело нейрона выполняет информационную (воспринимающую) и трофическую функцию по отношению к своим отросткам и их синапсам, обеспечивает рост дендритов и аксона. Дендриты (от греч. дендрон – дерево) – многочисленные (от1 до 1000) короткие ветвящиеся отростки, расположенные в различных частях нервной клетки. Дендриты являются основным воспринимающим полем нейрона (выполняют функцию «входа» нейрона). Тонкие разветвления дендритов покрыты микроскопическими выростами – шипиками. Шипики увеличивают площадь контакта нейрона с другими нервными клетками. Аксон, или нейрит (от греч. аксон – ось), представляет собой вырост цитоплазмы, приспособленный для проведения информации (собранной дендритами и переработанной в теле нейрона) от тела нервной клетки к другим нейронам (выполняют функцию «выхода» нейрона). Каждый нейрон имеет один аксон, расположенный всегда в так называемой базальной части нейрон. Окончание аксона сильно ветвится (один аксон может контактировать с 5000 нервных клеток). Длина аксона достигает 1 м и более. В большинстве случаев аксон одет в миелиновую оболочку. Сома и дендриты не имеют миелиновой оболочки, поэтому в массе мозга они имеют серый цвет – это серое вещество мозга. Аксоны, покрытые миелиновой оболочкой, образуют белое вещество мозга – это скопления проводящих путей. Конечные разветвления аксона вблизи клетки, к которой он подходит, имеют особые контактные образования – синапсы (от греч. synapsis – соединение, связь), предназначенные для передачи сигнала другой клетке. Количество синапсов очень велико, они покрывают тело нейрона, его дендриты и аксон. В целом 80 % мембраны нейрона покрыто синапсами. Тело нейрона покрыто синапсами на 38 %.

По морфологическим признакам нейроны делят на униполярные (1 аксон), псевдоуниполярные (2 отростка, аксон и дендрит, сливаются вблизи тела клетки в единый), биполярные (1 аксон и 1 дендрит) и мультиполярные (1 аксон и несколько дендритов). Насчитывается до 60 различных вариантов строения мультиполярных нейронов: веретенообразные, звездчатые, корзинчатые, пирамидные.

В функциональном отношении нейроны делят на: 1) чувствительные (афферентные), получающие и передающие информацию в вышележащие структуры ЦНС; 2) двигательные (эфферентные), получающие и передающие информацию в нижележащие структуры ЦНС, в нервные узлы и к рабочим органам; 3) вставочные (интернейроны), обеспечивающие взаимодействие между нейронами в ЦНС.

Строение синапсов. В синапсе различают пресинаптическую мембрану (относится к окончанию аксона передающей клетки), синаптическую щель (пространство между мембранами контактирующих клеток) и постсинаптическую мембрану (относится к исполнительной клетке – мышечной, железистой или следующему в цепи нейрону).

В соответствии с морфологическим принципом синапсы подразделяют на: аксодендритические (между аксоном одного нейрона и дендритом другого), аксосоматические (между аксоном одного нейрона и телом другого), аксо-аксональные (между двумя аксонами), дендродендритические (между дендритами двух или нескольких нейронов), дендросоматические (между дендритами одного нейрона и телом другого).

По способу передачи возбуждения синапсы делят на химические, электрические и смешанные. В химическом синапсе передача закодированной в нервных импульсах информации осуществляется с помощью медиаторов (от лат. mediator – посредник) – особых веществ, способных вызывать возбуждение постсинаптической мембраны. Запасы медиаторов содержатся в синаптических пузырьках, расположенных в синаптическом окончании (расширении). Здесь же находятся митохондрии, обеспечивающие энергией процесс синтеза и высвобождения медиатора. В синапсах при поступлении сигнала из синаптических пузырьков могут выделяться химические вещества двух типов: возбуждающие (ацетилхолин, норадреналин) и тормозящие (серотонин, гамма-аминомасляная кислота). При возбуждении нейрона медиаторы выходят в синаптическую щель, толщина которой составляет не более 20 нм. Выделившиеся медиаторы диффундируют к постсинаптической мембране, изменяют ее проницаемость к Na+ и вызывают возбуждение или торможение второго нейрона. При многократном раздражении пресинаптического окончания запасы медиатора в синаптических пузырьках истощаются, при этом проведение возбуждения становится невозможным. В этом случае необходимо время для синтеза новой порции медиатора. Для химического синапса характерно наличие синаптической задержки (~ 0.5 мс) и одностороннее проведение возбуждения (от пресинаптического окончания к субсинаптической, постсинаптической мембране).

В электрическом синапсе синаптическая щель очень узкая (2 нм), в результате чего электрический сигнал легко передается с пре- на постсинаптическую мембрану. Такие синапсы в организме человека представлены нешироко (например, в сетчатке глаза)

Нервы и нервные волокна. Нервными волокнами называются покрытые оболочками отростки нервных клеток. Тела нейронов и большая часть их дендритов сосредоточены в спинном и головном мозге. Незначительная часть дендритов и аксоны выходят далеко за пределы ЦНС. Объединяясь друг с другом, они образуют нервы. Основная функция нервных волокон и нервов – проведение нервных импульсов. Различают чувствительные нервы (афферентные), проводящие нервные импульсы к ЦНС (центростремительные), двигательные нервы (эфферентные), проводящие нервные импульсы от ЦНС к периферическим органам (центробежные), и смешанные нервы, состоящие из чувствительных и двигательных волокон.

Нервные волокна бывают миелиновые (мякотные), и безмиелиновые (безмякотные). Мякотные нервные волокна имеют оболочку, состоящую из жироподобного вещества – миелина, выполняющего трофическую, защитную и электроизолирующую функции. Миелиновая оболочка не покрывает осевой цилиндр (отросток нервной клетки) сплошным слоем, а прерывается – это перехваты Ранвье, расстояние между которыми различно: чем толще волокно, тем больше расстояние между перехватами. В таких волокнах возбуждение охватывает только перехваты (сальтаторное проведение возбуждения), поэтому скорость проведения возбуждения в мякотных волокнах высока (120 м/с). В безмякотных нервных волокнах возбуждение охватывает последовательно все участки нервного волокна, поэтому скорость распространения возбуждения в таких волокнах значительно ниже (1–30 м/с), и возбуждение распространяется с постепенным ослаблением. Скорость проведения возбуждения по таким волокнам определяется его диаметром: чем больше диаметр, тем выше скорость проведения. Кроме того, распространение возбуждения таким способом требует и более значительных энергозатрат

Рефлекс и рефлекторная дуга. В основе всей деятельности нервной системы лежит рефлекторный принцип. Рефлекс – это ответная реакция организма на раздражение, происходящая при участии центральной нервной системы. Узловой момент развития рефлекторной теории – классический труд И.М. Сеченова (1863) «Рефлексы головного мозга», где был впервые провозглашен тезис, что все виды сознательной и бессознательной жизни человека представляют собой рефлекторные реакции.

В естественных условиях рефлекторная реакция происходит при пороговом и сверхпороговом раздражении входа рефлекторной дуги – рецептивного поля данного рефлекса. Рецептивным полем называют определенный участок воспринимающей чувствительной поверхности организма с расположенными здесь рецепторными клетками, раздражение которых инициирует (запускает) рефлекторную реакцию. Рецепторные поля разных рефлексов имеют определенную локализацию, рецепторные клетки – соответствующую специализацию для оптимального восприятия адекватных раздражителей.

Структурной основой рефлекса является рефлекторная дуга последовательно соединенная цепочка нервных клеток, обеспечивающая осуществление реакции, или ответа, на раздражение. Рефлекторная дуга состоит из афферентного, центрального и эфферентного звеньев, связанных между собой синаптическими соединениями. Выделяют 5 элементов рефлекторной дуги: 1) рецептор, 2) чувствительное (центростремительное) нервное волокно, 3) центральная часть (нейроны ЦНС), 4) двигательное (центробежное) нервное волокно, 5) исполнительный орган (эффектор).

Афферентная часть дуги начинается рецепторными образованиями – специальным аппаратом, воспринимающим раздражения (сигналы) из окружающей среды или внутренней среды организма и трансформирующим энергию внешних раздражений в энергию нервного импульса. Афферентные нервные волокна передают импульсы телам чувствительных нейронов, расположенных в спинномозговых ганглиях (узлах) с рецепторов кожи, скелетных мышц и внутренних органов, а также телам чувствительных нейронов, расположенных в ганглиях черепно-мозговых нервов, с рецепторов в области головы.

Центральную часть рефлекторной дуги образуют вставочные и эфферентные нейроны.

Исполнительные органы – это скелетные, гладкие мышцы и клетки желез.

Эфферентный путь к скелетным мышечным волокнам образован аксонами двигательных (моторных) нейронов, расположенных в передних рогах спинного мозга. Для гладких мышц внутренних органов и железистых клеток эфферентное звено представлено аксонами вегетативных нейронов, расположенных в вегетативных центрах и ганглиях.

Если эффекторами являются внутренние органы, говорят о вегетативных рефлексах, если скелетные мышцы – о соматических рефлексах.

В простейшем случае рефлекторная дуга состоит из двух нейронов и одного синапса, т. е. является двухнейронной, или моносинаптической. Например, рефлекторная дуга сухожильного рефлекса в ответ на растяжение.

В большинстве случаев в состав рефлекторных дуг входят три нейрона или более, а связь между ними обеспечивают множество синапсов. Такие дуги называют многонейронными или полисинаптическими.

Представленная схема рефлекторной дуги нуждается в дополнении. Работами П.К. Анохина и Н.А. Бернштейна было показано, что осуществление ответной реакции при каких-либо раздражениях невозможно без так называемой обратной афферентации, или обратных связей, информирующих организм о выполнении ответной реакции, о достижении организмом полезного результата действия. Обратная афферентация обеспечивает организму осуществление ответных реакций в кратчайший срок и с наибольшей для него выгодой. В этом заключается биологический смысл обратной связи и непременное условие оптимальной регуляции функциональной деятельности животного организма. Обратная афферентация не требует для себя специальных морфологически обособленных нервных каналов связи. Информация о проделанном действии приходит в мозг по обычным чувствительным нервным волокнам. Таким образом, представления о трехчленной схеме рефлекторной дуги заменены понятием рефлекторного кольца, в котором возбуждение циркулирует от рецепторов к мозгу, затем к исполнительным органам и вновь возвращается в ЦНС.

Возрастные особенности структур нервной системы. На ранних стадиях эмбрионального развития нейрон состоит из тела и двух недифференцированных и неветвящихся отростков. Тело нейрона содержит крупное ядро, окруженное небольшим слоем цитоплазмы. С 3 недели внутриутробного развития начинается рост аксона по направлению к рабочему органу – мышце или железе. Функциональная деятельность нейрона начинается с момента, когда аксон достигает рабочего органа. Проведение возбуждения возможно с момента формирования всех структур синапса. Дендриты вырастают значительно позже аксона. Дендритный шипиковый аппарат формируется в постнатальном периоде и обеспечивается притоком внешней информации. Число нейронных шипиков напрямую связано с процессами обучения. Чем более интенсивно проводится обучение, тем большее число шипиков образуется на дендритах, тем в большей степени изменяется их форма. У взрослых по сравнению с новорожденными число ветвлений дендритов увеличивается в 13 раз, а общая длина дендритов нейронов коры больших полушарий – в 34 раза.

Различные типы нервных клеток созревают в онтогенезе гетерохронно. В эмбриональный период созревают крупные афферентные и эфферентные нейроны. Созревание мелких клеток (интернейронов) происходит после рождения под влиянием средовых факторов, что создает предпосылки для пластичной перестройки в ЦНС.

В процессе постнатального развития человека значительно увеличивается число и размеры синапсов. У взрослого число контактов одного нейрона может достигать 10 000. Число межнейронных связей находится в прямой зависимости от процессов обучения: чем интенсивнее идет обучение, тем большее число синапсов образуется. Количество медиатора, синтезируемого в синапсах у ребенка значительно ниже, чем у взрослых, в результате чего при многократной стимуляции истощение его запаса происходит быстрее. Кроме того для синтеза новых порций медиатора организму ребенка требуется большее время, чем взрослому организму.

На первых этапах онтогенеза миелиновая оболочка отсутствует и ее развитие интенсивно идет в постнатальном периоде. Увеличение толщины миелиновой оболочки ведет к повышению скорости проведения нервных импульсов по нервному волокну. Формирование оболочек в значительной степени зависит от условий жизни ребенка. В неблагоприятных условиях процесс миелинизации может замедляться на несколько лет, что затрудняет управляющую и регулирующую деятельность нервной системы. Миелинизация происходит в направлении от периферии к центу (гетеротопно): раньше других миелинизируются периферические нервы, затем – волокна спинного мозга, стволовая часть головного мозга, мозжечок и позже всех – волокна больших полушарий. Двигательные нервные волокна покрываются миелиновой оболочкой уже к моменту рождения, чувствительные (например, зрительные) волокна – в течение первых месяцев постнатального развития. К 3 месяцам миелинизируется большинство смешанных и чувствительных нервов. В головном мозге раньше миелинизируются чувствительные пути, а двигательные – через 5-6 месяцев после рождения. Миелинизация в основном заканчивается к 2-3 годам.

Возбудимость у новорожденных значительно ниже, чем у взрослых (чтобы вызвать рефлекторную реакцию у новорожденного, необходимо приложить силу в 20 раз большую, чем для взрослого). Возбудимость начинает постепенно повышаться с 3-месячного возраста. Проводимость нервов у детей также низкая (скорость проведения возбуждения у новорожденных не превышает 50 % от скорости проведения возбуждения у взрослых). С возрастом в связи с миелинизацией проводимость увеличивается и к 5-9 годам становится как у взрослых.