Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ ФУНКЦИЙ.docx Физиология.docx
Скачиваний:
90
Добавлен:
22.03.2015
Размер:
49.24 Кб
Скачать

Гормональная регуляция функций.

Эндокринная, паракринная и аутокринная регуляция. Классификация гормонов, их функции, механизм действия.

Впервые понятие о железах внутренней секреции сформулировал И. Мюллер в 1830 г. В 1889 г. Ш. Броун-Секар провел опыты на себе, установив, что вытяжки из семенников животных оказывают омолаживающий эффект на организм (но вскоре оказалось, что этот эффект пропадает через 2 – 3 месяца). В 1901 г. Л.В. Соболев показал, что поджелудочная железа выделяет некое физиологически активное вещество, которое в 1921 г. было идентифицировано как инсулин. Э. Старлинг (1905 г.) предложил называть такие вещества гормонами, т.е. веществами, побуждающими к действию, к активности. Вскоре были описаны гормоны, выделяемые железами внутренней секреции.

Железами внутренней секреции, или эндокринными называют железы, не имеющие выводных протоков и выделяющие продукты своей жизнедеятельности (гормоны) непосредственно в кровь или тканевую жидкость (во внутреннюю среду организма). Для них характерно обильное кровоснабжение, обеспечивающее быстрое поступление гормонов в кровь и доставку их к органам и тканям. Деятельность желез внутренней секреции играет важную роль в регуляции длительно протекающих процессов: обмена веществ, роста, умственного, физического и полового развития, гомеостаза и т.д., а также в реакциях организма на действие стрессорных факторов.

Гормоны – это биологически активные вещества, которые:

1) синтезируются в специальных эндокринных органах и эндокринных клетках (например, гормоны пищеварительного тракта);

2) поступают в кровь и действуют дистанционно на клетки-мишени, имеющие специфические рецепторы (для одного гормона может быть несколько рецепторов, вызывающих различные эффекты);

3) обладают специфическим действием, вызывают специфические реакции.

Важнейшими железами внутренней секреции являются гипофиз, эпифиз, щитовидная и паращитовидная железы, тимус, надпочечники, поджелудочная железа, половые железы, плацента и др.

Поджелудочная железа и половые железы являются железами смешанной секреции, поскольку, кроме гормонов, они вырабатывают секреты, поступающие по выводным протокам, т.е. выполняют функции желез внешней секреции.

При нарушениях деятельности желез внутренней секреции возникают так называемые эндокринные заболевания, обусловленные гиперфункцией (повышенной активностью) или гипофункцией (пониженной активностью) этих желез.

Во второй половине XX века было установлено, что биологически активные вещества вырабатываются не только в железах внутренней секреции, но и в других органах, например, в пищеварительной системе, почках, печени, сердце, бронхах. В настоящее время клетки, которые их синтезируют, объединяют в так называемую диффузную систему. В связи с тем, что эти клетки способны поглощать и декарбоксилировать аминокислоты-предшественники гормонов, их назвали АПУД-клетки (Amine Precursor Uptake Decarboxylation), или апудоциты. Сейчас уже известно более 50 видов апудоцитов, которые синтезируют серотонин, адреналин, гистамин, инсулин, гастрин, секретин, энкефалины, эндорфины и др. На основании этого, выделяют следующие варианты действия гормонов:

1. Гормональное, или собственно эндокринное, при котором гормон выделяется из клетки-продуцента, попадает в кровь и с током крови подходит к органу-мишени, действуя на расстоянии от места образования гормона.

2. Паракринное, когда гормон из клетки выделяется во внеклеточное пространство, а из него воздействует на клетки-мишени, расположенные рядом.

3. Аутокринное, когда гормон действует на те же клетки, в которых он образуется.

Гормоны могут транспортироваться кровью в свободном состоянии или в связанном с альбуминами и глобулинами виде.

Период полураспада (Т1/2) у большинства гормонов составляет 10 – 100 мин, у адреналина – 0,5 мин, у других катехоламинов – 1 – 2 мин. Самый большой Т1/2 (до 4 сут) у гормонов щитовидной железы.

Классификация гормонов, их функции. Механизмы действия гормонов.

Функции гормонов:

1) обеспечение нормального физического, психического и полового развития;

2) регуляция гомеостаза;

3) обеспечение механизмов адаптации организма к изменениям окружающей среды.

Классификация гормонов:

I. По способу действия:

1. Эффекторные – действуют на периферические клетки-мишени.

2. Тропные – стимулируют выделение эффекторных (в гипофизе, преимущественно, в передней доле);

3. Гипоталамические – регулируют образование тропных гормонов:

– либерины, или рилизинг-факторы, стимулируют секрецию, – статины – тормозят.

II. По химической природе:

1. Белки: а) сложные белки (гликопротеиды): тиреотропный,

фолликулостимулирующий и лютеинезирующий гормоны; б) пептиды, состоящие из 30 – 200 аминокислотных остатков: адренокортикотропный (39 аминокислотных остатков), соматотропный (191)

гормоны, пролактин, глюкагон и др.; в) олигопептиды: либерины, статины, гормоны желудочно-кишечного тракта; например, соматостатин содержит 14 остатков аминокислот, гонадолиберин – 10, окситоцин – 9. Все белковые гормоны гидрофильны, поэтому они не способны самостоятельно проникать через плазматические мембраны, а только с помощью переносчиков. Однако они растворимы в воде, поэтому могут переноситься кровью.

2. Стероидные или липидные гормоны – производные холестерина: кортикостерон, кортизол, альдостерон, эстрадиол и др. Эти гормоны липофильны, поэтому они легко проникают через клеточные мембраны, но в крови для их транспорта нужны специальные переносчики.

3. Производные аминокислот: адреналин, норадреналин, дофамин, тиреоидные гормоны (трийодтиронин, тироксин) – производные тирозина, серотонин – производное триптофана, гистамин производное гистидина. Только тиреоидные гормоны могут проникать через клеточные мембраны, остальным нужны переносчики или вторичные посредники.

Рецепторы гормонов – это белковые структуры на поверхности или внутри клетки, на которые действуют гормоны. На поверхности клетки (в клеточной мембране) находятся рецепторы к белковым гормонам – тиреотропину, соматотропину, гастрину, энкефалинам, эндорфинам, а также к катехоламинам, простагландинам, серотонину и т.д. Внутри клетки находятся рецепторы к стероидным гормонам – глюкокортикоидам, эстрогенам и т.д., а также к тиреоидным гормонам.

Рецепторы обладают высоким сродством и избирательностью к гормонам. В одной и той же клетке могут быть десятки разных типов рецепторов. Их количество меняется в зависимости от уровня гормонов и регуляции их синтеза, в результате чего изменяется

и степень воздействия гормонов на клетки-мишени.

Механизмы действия гормонов

1. Механизм действия стероидных гормонов. Стероидные гормоны легко проникают через клеточную мембрану. В цитозоле взаимодействуют с соответствующим рецептором. Образовавшийся комплекс поступает в ядро, где взаимодействует с ДНК, в результате чего активируются процессы транскрипции, происходит трансляция РНК и увеличивается синтез белка.

2. Механизм действия тиреоидных гормонов. Они связывается с ядерным хроматином, активирует транскрипцию и синтез 10 – 12 белков-ферментов, участвующих в метаболизме, и активирует процессы энергообразования.

3. Механизм действия белковых гормонов, катехоламинов, серотонина, гистамина. Эти гормоны взаимодействуют с рецепторами, расположенными на поверхности клетки, и сигнал от них передается на так называемые вторичные посредники (Са2+ и др.), которые далее активируют ферменты, участвующие в синтезе белков, секреции гормонов и т.д.

Регуляция секреции гормонов

1. Гормональная регуляция. В гипоталамусе вырабатываются либерины и статины, которые из гипоталамуса попадают в гипофиз и усиливают (либерины) или уменьшают (статины) образование соответствующих гормонов в аденогипофизе. В свою очередь, гормоны аденогипофиза – адренокортикотропный гормон (АКТГ), лютеотропный гормон (ЛГ), соматотропный гормон (СТГ), тиреотропный гормон (ТТГ) – вызывают изменения образования гормонов в соответствующих железах внутренней секреции.

2. Регуляция секреции гормонов по типу обратной отрицательной или положительной связи. Осуществляется в гормональных цепях, в которых выделение одного гормона стимулирует выделение следующего и т.д., а затем конечный гормон цепи стимулирует (положительная связь) или тормозит (отрицательная связь) выделение первого гормона этой цепи. Примером такой регуляции является уменьшение выделения тиролиберина гипоталамусом под влиянием тироксина.

3. Регуляция с участием структур ЦНС. При активации симпатической нервной системы повышается продукция адреналина в мозговом слое надпочечников. Психоэмоциональные воздействия через структуры лимбической системы и гипоталамические образования способны существенно влиять на деятельность клеток, синтезирующих гормоны.

Гормоны гипоталамуса и гипофиза.

Гипоталамо-гипофизарная система. Эпифиз.

Гипоталамус является отделом ЦНС, на уровне которого осуществляется взаимосвязь нервных и гуморальных механизмов регуляции всех функций. Он выделяет гормоны, которые поступают в гипофиз, выделяющий в свою очередь эффекторные гормоны, активирующие выделение гормонов в соответствующей железе внутренней секреции. Либерины гипоталамуса (кортиколиберин, тиролиберин, гонадолиберин, соматолиберин, пролактолиберин, меланолиберин) усиливают выделение соответствующих гормонов гипофиза, статины (соматостатин, меланостатин, пролактостатин) – тормозят. Выработка гипоталамусом гормонов регулируется рефлекторно и зависит от афферентации от периферических рецепторов. Например, от холодовых рецепторов сигналы поступают в гипоталамус, где находится центр терморегуляции, вследствие чего активируется образование тиролиберина, который, попадая в гипофиз, стимулирует выработку ТТГ, под действием которого в щитовидной железе продуцируется трийодтиронин (калоригенные гормоны) и повышается температура тела.

Гипофиз, или нижний мозговой придаток, важнейшая железа эндокринной системы, расположена ниже моста головного мозга, под гипоталамусом, массой около 0,5 г. Состоит из передней (аденогипофиз), средней и задней (нейрогипофиз) долей. В аденогипофизе вырабатываются шесть гормонов, из которых четыре являются тропными, т.е. действуют на периферические эндокринные железы, а два – эффекторными, т.е. действуют непосредственно на ткани организма. К тропным гормонам относятся:

1. АКТГ, или кортикотропин (или адренокортикотропный гормон), увеличивающий секрецию глюкокортикоидов надпочечниками. Выработка АКТГ усиливается под действием кортиколиберина, вырабатываемого в гипоталамусе, причем максимальная

секреция кортиколиберина, АКТГ и соответственно глюкокортикоидов наблюдается в 6 – 8 часов утра, а минимальная – между 18 и 23 часами. Торможение образования АКТГ осуществляется по принципу отрицательной обратной связи под действием самих глюкокортикоидов.

2. ТТГ, или тиреотропин (или тиреотропный гормон), воздействующий на щитовидную железу, в результате чего повышается синтез тиреоидных гормонов.

3. ФСГ, или фолликулостимулирующий, гормон.

4. ЛГ, или лютеотропный, лютеинезирующий гормон, причем и ФСГ, и ЛГ являются гонадотропными, т.е. влияют на половые железы: в женских половых железах они ускоряют созревание и разрыв фолликулов, в мужских увеличивают выработку мужского полового гормона тестостерона и активируют процессы образования сперматозоидов.

К эффекторным гормонам принадлежат:

1. СТГ, соматотропный гормон, или соматотропин, усиливающий процессы роста и физического развития (кости, мышцы, связки) и активирующий процессы биосинтеза белка. При гиперфункции передней доли гипофиза в детском возрасте наблюдается усиленный рост (гигантизм), а при гипофункции – задержка роста (карликовость).

При гиперфункции передней доли гипофиза у взрослого человека развивается акромегалия. При акромегалии происходит увеличение отдельных частей тела: ушных раковин, носа, языка, нижней челюсти, кистей, стоп и органов грудной и брюшной полостей. При гипофункции гипофиза у взрослых возникают изменения в обмене веществ, что приводит либо к ожирению (гипофизарное ожирение), либо к резкому исхуданию (гипофизарная кахексия).

2. Пролактин, способствующий развитию молочных желез и повышающий образование молока в молочных железах. В средней доле гипофиза продуцируется меланоцитстимулирующий гормон (интермедин) – регулятор кожной пигментации.

Гормоны нейрогипофиза – окситоцин и антидиуретический гормон (АДГ), или вазопрессин. Они образуются в гипоталамусе, а затем по длинным отросткам нейронов (гипоталамо-гипофизарный тракт) поступают в заднюю долю гипофиза, где хранятся до поступления стимула. АДГ повышает реабсорбцию воды в почечных канальцах, в результате чего увеличивается объем циркулирующей крови, повышается артериальное давление и снижается объем мочи. При недостатке вазопрессина развивается несахарный диабет (несахарное мочеизнурение), когда выделяется до 10 – 20 л мочи в сутки. Окситоцин способствует сокращению гладкой мускулатуры матки и повышает выделение мочи.

Эпифиз, или шишковидная железа. Выделяет гормон мелатонин, который обеспечивает регуляцию биоритмов и метаболизма для приспособления организма к разным условиям освещенности. Избыток света тормозит выработку мелатонина. Эпифиз является «биологическими часами» организма. Выработку мелатонина стимулирует меланоцитостимулирующий гормон гипофиза.