Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
5 семестр / МКиМПвСУ / Электроника / Методичка по электронике отредактированный.doc
Скачиваний:
197
Добавлен:
28.03.2015
Размер:
11.35 Mб
Скачать

Федеральное агентство по образованию

Государственного образовательного учреждения

высшего профессионального образования

«Казанский государственный технологический университет»

Нижнекамский химико-технологический институт

Методические указания и задания для контрольных работ по «Электронике» для студентов-заочников.

Специальности АТПиП и АСОиУ.

Нижнекамск

2010г

Введение

Одним из основных видов занятий по курсу «Общая электротехника и электроника» является выполнение контрольных работ. Предлагаемые в пособии задания охватывают основной материал курса. При изучении курса студенты приобретают необходимые знания об основных методах расчета и физических процессах, с которыми приходится встречаться в электронике.

Общие методические указания к контрольной работе

Целью контрольной работы является окончательная проверка усвоения студентами соответствующих разделов курса. Приступать к выполнению очередной работы следует после изучения необходимого материала и решения задач из рекомендуемой литературы. При оформлении каждой задачи следует приводить исходную схему с принятыми буквенными обозначениями и числами заданных величин. Все рисунки, схемы и графики должны быть выполнены аккуратно в соответствии с ГОСТами. На осях координат должны быть указаны откладываемые величины и единицы их измерения. При оформлении контрольной работы нужно указывать все необходимые расчетные формулы. Конечный результат должен быть выделен из общего текста. Решение задач не следует перегружать приведением всех алгебраических преобразований. Каждый этап решения должен иметь пояснения. Результаты вычислений записывать с точностью до третьей значащей цифры. В конце работы необходимо привести список использованной литературы, поставить дату окончания работы и свою подпись. Вариант контрольных заданий задается преподавателем.

Контрольные задачи, включенные в методические указания, не охватывают всех разделов программы, поэтому для лучшего усвоения материала студентам помимо обязательных контрольных задач рекомендуется решать задачи на все разделы курса.

Образовательный гоСстандарт по дисциплине «Общая электротехника и электроника» раздел «Электроника»

Схемы замещения, параметры и характеристики полупроводниковых приборов; усилительные каскады переменного и постоянного тока; частотные и переходные характеристики; обратные связи в усилительных устройствах; операционные и решающие усилители; активные фильтры; компараторы; аналоговые ключи и коммутаторы; вторичные источники питания; источники эталонного напряжения и тока; цифровой ключ; базовые элементы, свойства и сравнительные характеристики современных интегральных систем элементов; методы и средства автоматизации схемотехнического проектирования электронных схем.

Выпрямители

1. Общие сведения о выпрямителях

Выпрямителями называют устройства, в которых с по­мощью электрических вентилей происходит выпрямление переменного тока.

Электрическим вентилем называют прибор, электри­ческое сопротивление которого в большой мере зависит от направления тока.

На рисунке 1.1 показана вольтамперная характеристика идеального вентиля (кривая 1), у которого при прохожде­нии тока в прямом направлении внутреннее сопротивление равно нулю, а при прохождении тока в обратном направле­нии — бесконечности. Кривая 2 является вольтамперной характеристикой ионного прибора (газотрона или ртут­ного вентиля), у которого сопротивление в прямом направ­лении мало, а в обратном направлении приближается к бес­конечности. Вольтамперная характеристика полупроводни­кового вентиля (кривая 3) показывает, что сопротивление вентиля в прямом направлении во много раз меньше сопро­тивления в обратном направлении. Из вольтамперной ха­рактеристики электронного вентиля (кривая 4) видно, что его внутреннее сопротивление в прямом направлении боль­ше, чем у полупроводниковых и ионных вентилей, а в об­ратном направлении равно бесконечности.

Сопротивление вентиля в прямом направлении

(1)

Электрические вентили, предназначенные для работы в выпрямителях, должны обладать по возможности малым сопротивлением Rпр, минимальным обратным током Iобр и достаточно большим обратным напряжением Uобр. Кроме того, вентиль должен потреблять минимальное количество энергии.

Рис. 1.1. Вольтамперные характеристики идеаль­ного (кривая 1), ионного (кривая 2),полупровод­никового (кривая 3) и электронного (кривая 4) вентилей

Основными элементами, входящими в схему выпрями­теля, являются: один или несколько венти­лей, пропускающих ток в одном направлении, сило вой трансформатор, согласующий величину вы­прямленного напряжения Uo с напряжением, действующим в сети переменного тока U1 и сглаживающий фильтр, уменьшающий пульсации выпрямленного тока. Кроме того, в схему выпрямителя могут входить вспомога­тельные трансформаторы для питания цепей накала ламп, стабилизаторы напряжения и другие вспомогательные эле­менты.

Обязательным для каждого выпрямителя является на­личие вентилей; некоторые выпрямители работают без сглаживающих фильтров, некоторые — без силового транс­форматора, если выпрямленное напряжение согласуется с напряжением сети переменного тока.

По количеству фаз различают однофазные и многофаз­ные выпрямители: по прохождению тока через вторичную обмотку трансформатора — однотактные выпрямители, у которых ток через вторичную обмотку трансформатора проходит только в одном направлении, и двухтактные вы­прямители, у которых ток во вторичной обмотке трансфор­матора проходит в обоих направлениях.

2. Однотактные выпрямители

Однофазный однотактный однополупериодный выпрямитель. Простейший однофазный однотактный выпрямитель (рис. 2.1. а) состоит из силового трансформатора Тр и вен­тиля В. Рассмотрим в этом параграфе работу выпрямитель­ных схем без сглаживающих фильтров. Процесс выпрям­ления переменного тока показан графически на рисунке 2.1. б в предположении, что вентиль является идеальным.

Рис. 2.1. Однофазный однотактный однополупериодный выпрямитель и графическое пояснение его работы

Замена реального вентиля идеальным не вызывает больших погреш­ностей при технических расчетах выпрямителей, но сильно упрощает изучение процессов, происходящих в выпрями­теле. Максимальное значение тока, проходящего через вентиль,

(2)

Полусинусоидальный ток, показанный на рис. 2. б, можно разложить в гармонический ряд

Первое слагаемое этого ряда

(4)

не зависит от частоты и называется постоянной составляю­щей выпрямленного тока.

Второе слагаемое

(5)

называется переменной составляющей выпрямленного тока и имеет частоту питающей сети . Следующие члены ряда называются высшими гармониками выпрямленного тока. Амплитуды высших гармоник значительно меньше ампли­туды Imax поэтому при расчете однополупериодного вы­прямителя ими обычно пренебрегают.

Коэффициентом пульсаций выпрямленного тока назы­вают отношение амплитуды наиболее ярко выраженной гармоники выпрямленного тока или напряжения к постоян­ной составляющей выпрямленного тока или напряжения Для однополупериодного выпрямителя

(6)

Постоянная составляющая выпрямленного напря­жения

U0 = I0RH. (7)

Для однополупериодного выпрямителя, пользуясь соот­ношениями (2) и (7), найдем:

(8)

т. е. постоянная составляющая выпрямленного напряже­ния составляет 0,45 от действующего значения напряже­ния вторичной обмотки трансформатора.

Соотношение (8) дает возможность найти вторичное напряжение трансформатора по заданному значению U0 .

Пример 1. Однополупериодный выпрямитель должен иметь по­стоянную составляющую выпрямленного напряжения Uo = 2500В. Пренебрегая внутренним сопротивлением вентиля, определить необходимое напряжение вторичной обмотки трансформатора.

Решение. Для определения U2 воспользуемся формулой (8)

Обратным напряжением выпрямителя называют мак­симальное значение отрицательного напряжения, появляю­щегося на аноде вентиля во время отрицательных полупе­риодов вторичного напряжения силового трансформатора. Для однополупериодного выпрямителя с фильтром обрат­ное напряжение максимально в режиме холостого хода, т. е. при токе нагрузки, равном нулю,

Uобр =6,28U0 (9)

Двухполупериодный однотактный выпрямитель. Двухполупериодный выпрямитель (рисунок 2.2 а) представляет со­бой два однополупериодных выпрямителя, работающих на общую нагрузку.

Рис. 2.2. Двухполупериодный однотактный выпрямитель и графи­ческое пояснение его работы

Напряжения, питающие вентили B1 и В2, должны быть одинаковы по величине и сдвинуты между собой по фазе на 180°. Для этого вторичную обмотку транс­форматора выполняют с выведенной средней точкой, а вто­ричные напряжения получают между средней точкой обмотки и ее концами. Графически процесс выпрям­ления показан на рисунке 2.2. б. Во время первых полуперио­дов ток ia1 проходит через вентиль В1, а во время вторых полупериодов ток iа2 проходит через вентиль В2. Через сопротивление нагрузки Rнтоки ia1 и ia2 проходят в одном направлении. При двухполупериодном выпрямлении по­стоянная составляющая выпрямленного тока в два раза больше, чем в однополупериодном выпрямителе

(10)

Следовательно, выпрямленное напряжение на выходе двухполупериодного выпрямителя

Uo = 0,9U2. (11)

Величина обратного напряжения в двухполупериод­ном выпрямителе

Uобр = 3,14U0. (12)

Коэффициент пульсаций q1= 0,667.

При вычислении коэффициента пульсаций двухполупе­риодный выпрямитель рассматривают как двухфазный вы­прямитель, напряжения обеих фаз которого сдвинуты между собой на 180°. Коэффициент пульсаций связан с числом фаз т выпрямителя простым соотношением:

(13)

Этой формулой нельзя пользоваться для вычисления коэф­фициента пульсаций однополупериодного выпрямителя, так как при т = 1 знаменатель дроби в формуле (13) обра­щается в нуль. Частота пульсаций в многофазном выпря­мителе в т раз больше частоты сети. Двухполупериодные выпрямители применяются для питания приемно-усилительных ламп в электронных усилителях и генераторах малой мощности, а также для питания ламп в радиоприем­никах и телевизорах.

Трехфазный однотактный выпрямитель. Принципиаль­ная схема выпрямителя трехфазного переменного тока пока­зана на рисунке 2.3. а. Как видно из рис. 2.3. б, пульсация тока в этом выпрямителе значительно меньше, чем в однофазном двухполупериодном, поэтому такой выпрямитель может ра­ботать даже без фильтра. В этой схеме могут применяться как полупроводниковые, так и электронные и ионные вен­тили.

Ток через любой вентиль и связанную с ним фазу вто­ричной обмотки трансформатора проходит в течение одной трети периода, т. е. тогда, когда напряжение соответствующей фазы выше, чем напряжение в двух других фазах. Ток через два других вентиля в эту треть периода проходить не может, так как потенциалы анодов этих вентилей будут ниже потенциалов их катодов. Переход тока от одного вен­тиля к другому происходит в точках пересечения положи­тельных полупериодов напряжения (рисунок 2.3. б).

Рис. 2.3. Трехфазный однотактный выпрямитель и графиче­ское пояснение его работы

Выпрямленное напряжение

(14)

т. е.

U0=1,17U2.

Среднее значение тока, протекающего через вентиль,

(15)

Обратное напряжение

Uo6p = 2,09U2. (16)

Действующее значение напряжения вторичной обмотки трансформатора

(17)

Коэффициент пульсаций

(18)

Трехфазные однотактные выпрямители применяются для питания анодов мощных радиоламп и питания маломощных двигателей постоянного тока.