Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
123
Добавлен:
30.03.2015
Размер:
1.02 Mб
Скачать

1.Экология как наука. Определения экологии. История экологии. Этапы развития экологии. Место экологии в системе знаний. Разделы и направления экологии. Задачи, объект и предмет исследования экологии.

Экология- общая наука об отношениях организмов с окружающей средой, куда мы относим все условия существования, они частично органической, частично не органической породы, но как те, так и другие имеют большое значение для форм организмов т.к принуждают приспосабливаться к себе.

Экология-наука о структуре закономерности формирования, развития и устойчивого функционирования биологических систем разного ранга в их взаимоотношения с условиями среды.

Термин "экология" (от греческого oikos - "дом", "местообитание") был впервые употреблен немецким биологом Эрнстом Геккелем в 1866 г. в многотомном труде о морфологии организмов.

История экологии

  1. Первые ботанико-географические сообщения экологического характера связаны с такими центрами древней культуры, как Китай, Египет, Индия, Греция. Уже в работах древнегреческих философов Гераклита (530 - 470 гг. до н.э.), Гиппократа (460 - 356 гг. до н.э.), Аристотеля (384 - 322 гг. до н.э.), Теофраста Эрезийского (372 - 287 гг. до н.э.), Плиния Старшего (23 - 79 гг.) и других содержатся сведения экологического характера. Например, Аристотель описал 500 известных ему видов животных, особенности их поведения и приспособления к условиям окружающей среды. Ученик Аристотеля Теофраст Эрезийский - "отец ботаники", как его часто называют, описывал особенности роста растений в разных условиях среды, зависимость их форм и особенностей их роста от грунта и климата.

В эпоху Возрождения продолжалось накопление данных о растительном и животном мире. Первые систематики Д. Цезалпин (1519 - 1603), Д.Рей (1627 - 1705), Ж.Турнефор (1556 - 1708) в своих трудах приводят сведения экологического характера, в частности, зависимость распространения растений от условий их произрастания.

  1. Второй период развития экологической науки связан с крупномасштабными ботанико-географическими исследованиями в природе. Начальный вклад в развитие этого направления исследований внесли систематик растений и животных видный шведский ученый Карл Линней (1707 - 1778), российские ученые М.Лепехин, К.Ф.Рулье, М.А.Северцов, А.М.Бекетов, немецкий биогеограф О.Гумбольдт, швейцарские ботаники отец и сын Декандоли, английский ученый-эволюционист Чарлз Дарвин.

  2. Третий этап системных исследований охватывает конец XIX - первую половину XX вв. и связан с именами российских ученых В.В.Докучаева, В.И.Вернадского, Г.Ф.Морозова, В.М.Сукачева.

Заметное место в развитии системных экологических исследований занимают труды немецких ученых Э.Геккеля, Р.Гессе, В.Кюнельта, американских исследователей В.Шелфорда, Р.Чепмена, Г.Кларка, английских - Ч.Элтона, А.Тенсли, швейцарца К.Шретера, испанца Е.Макфельдьена и других.

Сам термин был введен немецким зоологом-эволюционистом Эрнстом Геккелем (1866) в книге "Всеобщая морфология организмов".

Во втором томе этого обширного труда Э. Геккель дал свое определение экологии как науки: "Под экологией мы понимаем общую науку об отношениях организмов с окружающей средой, куда мы относим в широком смысле все "условия существования". Они частично органической, частично неорганической природы; но как те, так и другие... имеют весьма большое значение для форм организмов, так как они принуждают их приспосабливаться к себе.

Карл Францевич Рулье на протяжении 1841 -1858 гг. дал практически полный перечень принципиальных проблем экологии, не найдя, однако, выразительного термина для обозначения этой науки.

Он первый четко определил принцип взаимоотношений организма и среды: "Ни одно органическое существо не живет само по себе; каждое вызывается к жизни и живет только постольку, поскольку находится во взаимодействии с относительно внешним для него миром. Это закон общения или двойственности жизненных начал, показывающий, что каждое живое существо получает возможность к жизни частью из себя, а частью из внешности".

Разделы экологии:

Уровни организации: 1)аутэкология-воздействие факторов среды на организм и его реакция на них. 2) демэкология –изучает процессы в популяциях,динамику численности в популяциях.3) синэкология-биоцинология - взаимодействие популяций разных видов между собой входящих в одно сообщество.4)экосистемоэкология-изцчает функционирование экосистем, структуру биогеоценозов. 5) экология биосферы, глобальная экология

Направления экологии- теоретическая ( биоэкология->аутэкология->демэкология )практическая экология( 1.охрана и рациональное использование ресурсов.экология гидросфер,ландшавтная экология,экономика природопользования.2.физическая экология . механизмы с помощью которых биологические системы приспосабливаются3. Эвоюционная экология 4. Социоэкология-экологичемкий маркетинг,экологическое право. 5 техноэкология-использование различных источников энергии

Высшим по рангу обобщающим понятием является универсальная (общая) экология - наука о тактике и стратегии сохранения и стабильного развития жизни на Земле.

Она обобщает всю экологическую информацию, поступающую из других разделов, и на основе анализа этих данных и моделирования развития экологической ситуации на планете способствует принятию научно и логически обоснованных решений, касающихся реализации стратегических планов развития цивилизации.

Объектами экологии или ее подразделений в зависимости от уровня исследований являются экосистемы или их элементы.

Предмет исследований:

  • изучение особенностей и развития взаимосвязей между организмами, их группировками разных рангов, экосистемами и неживой компонентой экосистем;

  • исследование влияния природных и антропогенных факторов на функционирование экосистем и биосферы в целом.

Основные задачи экологии:

  • изучение с позиций системного подхода общего состояния современной биосферы планеты, причин его формирования и особенностей развития под влиянием природных и антропогенных факторов (т.е. изучение закономерностей формирования, существования и функционирования биологических систем всех уровней во взаимосвязи с атмосферой, литосферой, гидросферой и атмосферой);

  • прогноз динамики состояния биосферы во времени и пространстве;

  • разработка путей гармонизации взаимоотношений человеческого общества и природы, сохранение способности биосферы к самовосстановлению и саморегуляции с учетом основных экологических законов и общих законов оптимизации взаимосвязей общества и природы.

3. Понятие, свойства и классификация экологических факторов. Основные экологические факторы (солнечное излучение, температура, влажность, осадки) и их влияние на организм.

Экологические факторы

— все составные (элементы) естественной среды, которые влияют на существование и развитие организмов и на какие живые существа реагируют реакциями приспособления (за пределами способности приспособления настает смерть). Раньше выделяли три группы экологических факторов - абіотические (неорганические условия: химические и физические, такие, как состав воздуха, воды, грунта, температура, свет, влажность, радиация, давление и т.п.), биотические (формы взаимодействия между организм-хозяин-паразит) и антропогенные (формы деятельности человека).

Сегодня различают десять групп экологических факторов (общее количество — около шестидесяти), объединенных в специальную классификацию:

временем — факторы времени (эволюционные, исторические, действующие),

периодичности (периодический и непериодический), первичные и вторичные;

происхождением (космические, абиотические, биотические, природно-антропогенные, техногенные, антропогенные);

средой возникновения (атмосферные, водные, геоморфологические, физиологические (генетические, екосистемные));

характером (информационные, физические, химические, энергетические, биогенные, комплексные, климатические);

объектом влияния (индивидуальные, групповые, видовые, социальные);

степенью влияния (летальные, экстремальные, ограничивающие, возмущающие, мутагенные, тератогенные);

по условиям действия (зависимые или независимые от плотности);

спектром влияния (выборочного или общего действия).

Одни и те же экологические факторы неодинаково влияют на организмы разных видов, которые живут вместе. Для одних они могут быть благоприятными, для других — нет.

Важным элементом есть реакция организмов на силу влияния экологического фактора, отрицательное действие которого может возникать в случае излишка или недостатка дозы.

Поэтому есть понятие благоприятная доза. или зона оптимума фактора, и зона пессимума (доза фактора, за которой организмы чувствуют себя угнетенно).

Диапазоны зон оптимума и пессимума есть критерием для определения экологической валентности — способности живого организма приспосабливаться к изменениям условий среды.

Количественно она выражается диапазоном среды, в границах которого вид нормально существует.

Экологическая валентность разных видов может быть очень разной (северный олень выдерживает колебание температуры воздуха от -55 к +25-30°С, а тропические кораллы гибнут уже при изменении температуры на 5-6 °С).

По экологической валентности организмы разделяют на стенобионты - с маленькой приспособленностью к изменениям среды (орхидеи, форель, дальневосточный рябчик, глубоководные рыбы) и еврибионты — с большой приспособленностью к изменениям окружающей среды (колорадский жук, мыши, крысы, волки, тараканы, камыш, пырей).

В границах еврибионтов и стенобионтов в зависимости от конкретного фактора организмы разделяют на эвритермные и стенотермные (за реакцией на температуру), евригалинные и стеногалинные (за реакцией на соленость водной среды), еврифоты и стенофоты (за реакцией на освещение).

Важным есть также понятие лимитирующие факторы, то есть такие, уровень (доза) которых приближается к границе выносливости организма, концентрация которого ниже или высшая оптимальной. Это понятие затронуто законами минимума Либиха (1840 г) и толерантности Шелфорда (1913 г.). Наиболее часто лимитирующими факторами есть температура, свет, биогенные вещества, течения и давление в среде, пожары и т.п..

Более всего распространенные организмы с широким диапазоном толерантности относительно всех экологических факторов. Высочайшая толерантность характерная для бактерий и сине-зеленых водорослей, которые выживают в широком диапазоне температур, радиации, солености, Рн.

Солнечная радиация

свет - это фактор не только '' жизненно важный, но и лимитирующий, причем и на максимальном, и на минимальном уровнях.

:

  • < 150 нм - зона ионизирующей радиации,

  • 150 - 400 (390) нм - ультрафиолетовая (УФ) радиация,

  • 400 (390) - 800 (760) нм

видимый свет (границы диапазона различаются для разных организмов),

  • 800 (760) - 1000 нм - инфракрасная (ИК) радиация,

  • > 1000 нм

зона т.н. дальней ИК-радиации - мощного фактора теплового режима среды.

Для эколога важной характеристикой солнечного излучения является его интенсивность.

Интенсивность потока солнечной радиации по верхней границе атмосферы, называемая солнечной постоянной

лучистая энергия, достигающая земной поверхности в ясный день, состоит примерно на:

10% из ультрафиолетового излучения

45%— из видимого света

45% — из инфракрасного излучения.

Меньше всего ослабляется видимый свет, при прохождении через облака и воду.

Радиационный баланс на верхней границе экосистемы составляют поглощенная солнечная радиация (1-а)Q и инфракрасное излучение атмосферы (Be).

Уравнение радиационного баланса можно представить в виде:

R= (1 – a )Q – Be

где,

R - интенсивность остаточной радиации (радиационный баланс на верхней границе экосистемы);

(1 - a) Q - поглощенная солнечная радиация; (кал/см2/един. врем.)

Q - интенсивность суммарной радиации; (кал/см2/един. врем.)

a - коэффициент отражения( альбедо); а=Qотр/Q

Ве - инфракрасное излучение атмосферы.

Энергия радиации, поступающая в экосистему с интенсивностью R, претерпев ряд промежуточных превращений, расходуется в экосистеме на нагревание, турбулентную теплопередачу в атмосферу, фотосинтез, транспирацию. Процесс можно выразить уравнением:

R = Н + G + LE + F

где

R - интенсивность остаточной радиации (радиационный баланс на верхней границе экосистемы);

Н - энергия, идущая на нагревание экосистемы;

G - энергия, идущая на турбулентную теплопередачу в атмосферу (из почвы);

LE - энергия, идущая на транспирацию (L - скрытая теплота парообразования, Е- интенсивность транспирации);

F - энергия, идущая на фотосинтез.

Животные и растения реагируют на различные области спектра:

Так, у разных животных по-разному устроен зрительный аппарат, у них различное "цветовое" зрение. Среди млекопитающих цветовое зрение хорошо развито только у приматов, тогда как другие животные видят весь мир черно-белым, хотя и с большим числом оттенков.

Каждый вид организма адаптирован к тому или иному спектру длиной волны света. Одни виды организмов адаптировались к ультрафиолетовым, а другие к инфракрасным.

Некоторые организмы способны различить длину волны. Они обладают специальными световоспринимаемыми системами и имеют цветное зрение, которые имеют огромное значение в их жизнедеятельности. Многие насекомые чувствительны к коротковолновому излучение, которое человек не воспринимает. Ночные бабочки хорошо воспринимают ультрафиолетовые лучи. Пчелы и птицы точно определяют свое местонахождение и ориентируются на местности даже ночью.

Процесс фотосинтеза у растений является предметом специального изучения. С изменением длины волны сильно меняется интенсивность фотосинтеза, т. е. существует оптимум, в диапазоне которого процесс идет наиболее эффективно.

Растения приспособились к условиям светового излучения путем создания пигментов, наборы которых сильно отличаются у разных представителей растительного мира.

Наиболее значительные отличия имеют место у наземных и водных растений. Проходя через слой воды, красная и синяя область спектра поглощаются, и получающийся зеленоватый свет слабо поглощается хлорофиллом. Красные морские водоросли (Rhodophyta) имеют дополнительные пигменты (фикоэритрины), позволяющие им использовать энергию Солнца и в этом диапазоне длин волн. Благодаря такому приспособлению они могут жить на больших глубинах, чем зеленые водоросли.

Ультрафиолетовые лучи носят много энергии и обладают большим фотохимическим воздействием. Организмы к ним очень чувствительны. Инфракрасные лучи несут меньше энергии и очень быстро поглощаются водой, но некоторые сухопутные организмы также используют их, и за счет их повышают температуру своего тела по сравнению с температурой окружающей среды.Организмы сильно реагируют и на интенсивность света. По этим признакам они делятся на три экологические группы:

Светолюбивые, солнцелюбивые или гелиофиты— которые способны нормально развиваться только под солнечными лучами. Тенелюбивые, или сциофиты —это растения нижних ярусов лесов и глубоководные растения, например, ландыши и другие.

  • При снижении интенсивности света замедляется и фотосинтез. У всех живых организмов существуют пороговые чувствительности интенсивности света.

  • У различных организмов пороговая чувствительность неодинакова. Например, интенсивный свет тормозит развитие мух дрозофилл, даже вызывает их гибель.

  • Свет может выступать в качестве сигнального фактора, для более сухого и теплого пространства.

  • У большинства фотосинтетических растений при слабой интенсивности света идет торможение синтеза белков, а у животных тормозятся процессы биосинтеза.

  • Большинство наземных организмов ведут дневной образ жизни. Например, большинство воробьиных и другие. Исключительно ночной образ жизни ведут, например, мелкие грызуны и т.д.

    1. Теневыносливые или факультативные гелиофиты. Растения которые хорошо растут и в тени и на свету. У животных эти свойства организмов называются светолюбивые (фотофилы), тенелюбивые (фотофобы).

  • Большая часть планктонных организмов ночью поднимается на поверхность воды, а днем они опускаются на глубину до 100 м. Эти организмы избегают слишком яркого света. Например, веслоногие рачки.

  • Некоторые организмы эволюционно адаптировались к смене дня и ночи. Эти организмы приобрели свойства внутренних часов. Например, реснитчатые простейшие делятся только ночью, если даже в лабораторных условиях их постоянно освещать.

  • Смена дня и ночи имеет большое биологическое значение. На экваторе продолжительность дня в течение года не изменяется. В умеренном поясе имеются весна, лето и зима. Продолжительность дня называют фотопериодом. К фотопериоду организмы адаптировались эволюционно.

  • Фотопериод, как экологический фактор оказывает влияние на многие стороны жизнедеятельности организмов и их биологическим явлениям.

  • Например, размножение и другие свойства многих млекопитающих и птиц проходит в зависимости от длины дня. Наступление цветения у большинства высших растений и их различных биологических свойств приурочены к различным условиям светового дня.

Температура является важным и часто лимитирующим фактором среды.

Ведущая роль в формировании температуры принадлежит энергии радиационного балланса, а именно той его части, которая идет на нагревание экосистемы (Н).

Вторым фактором является температура на верхней границе атмосферы, определяющая вторжение теплых или холодных воздушныых масс.

Диапазон температур, которые зарегистрированы во Вселенной, равен тысяче градусов, но пределы обитания живых существ на Земле значительно уже: чаще всего от - 200°С до + 100 °С.

Протоплазмы клеток всех живых организмов способны жить лишь при температуре между от 0° и 500.

Животные менее стойки. По толерантности организмов к температурному режиму они делятся на эвритермные и стенотермные, т.е. способные переносить колебание температуры в широких пределах или узких пределах.

В зависимости от способа адаптации организмов к температурному режиму они делятся на две экологические группы:

криофиллы — организмы, приспособленные к холоду, к низким темпера турам; термофилы — или теплолюбивые.

Диапазон толерантности у наземных животных в целом больше, чем у водных (не считая микроорганизмов). Изменчивость температуры, временная и пространственная, является мощным экологическим фактором среды. Живые организмы приспосабливаются к различным температурным условиям; одни могут жить при постоянной или относительно постоянной температуре, другие лучше адаптированы к колебаниям температуры.

Воздействие температурного фактора на организмы сводится к его влиянию на скорость обмена веществ. Если исходить из правила Вант-Гоффа для химических реакций, то следует заключить, что повышение температуры вызовет пропорциональное возрастание скорости биохимических процессов обмена веществ.

При анализе взаимосвязей между организмами и температурой окружающей среды все организмы делят на два типа: гомойотермных и пойкилотермных. Такое разделение относится к животному миру; иногда животных подразделяют на теплокровных и холоднокровных

  1. Причиной гибели организма при высоких температурах является нарушение гомеостаза и интенсивности обмена веществ, денатурация белков и инактивация ферментов, обезвоживание.

  2. Необратимые нарушения структуры белков возникают при температуре около 60°С. Именно таков порог "тепловой смерти" у ряда простейших и некоторых низших многоклеточных организмов.

  3. Адаптации к изменению температур выражаются у них в образовании таких форм существования, как цисты, споры, семена. У животных "тепловая смерть" наступает раньше, чем происходит денатурация белков, вследствие нарушений деятельности нервной системы и других регуляторных механизмов.

  4. При низких температурах обмен замедляется или даже приостанавливается, происходит образование кристаллов льда внутри клеток, что приводит к их разрушению, повышению внутриклеточной концентрации солей, нарушению осмотического равновесия и денатурации белков.

  5. Морозоустойчивые растения выдерживают полное зимнее промерзание благодаря ультраструктурным перестройкам, направленным на обезвоживание клеток. Семена выдерживают температуры, близкие к абсолютному нулю.

В целом, температура может оказывать двоякое воздействие на организм:

  1. Прямое воздействие – увеличение скорости обменных процессов (у пойкилотермных животных). Это определяет окраску насекомых (северные более темные).

  2. Косвенное воздействие – воспринимается рецепторами. При этом животное находит более комфортную зону (передвижение хлопковой тли в течение суток по хлопчатнику).

  3. Температура определяет тип активности животного (например, ползанье и разные типы полета).

Влияние температуры на скорость развития пойкилотермных животных.

  1. Скорость развития (V) зависит от температуры. Чем выше последняя тем вышеV.

  2. Наиболее высока скорость развития в зоне температурного оптимума.

  3. Сумма эффективных температур. Пороговая температура. Требуется определенная доза тепла, т.е. число «градусо-дней» или тепловая постоянная (К).

,

где N- срок развития (дни), t i - средняя суточная температура, tпорог- пороговая температура.

Для нахождения пороговой температуры необходимо знать сроки развития при двух температурах.

Обычно пороговая температура для насекомых в пределах от +3 до +8ºС.

ВДАЖНОСТЬ. Влажность— это параметр характеризующий содержание водяного пара в воздухе.

  • Абсолютная влажность— это количество водяного пара в воздухе и зависит от температуры и давления.

  • Относительной влажностью - соотношение количества водяного пара в воздухе к насыщенному количеству пара при определенных условиях температуры и давления.

R отн = (R абс/R макс)*100%

Rабс-реальная абсолютная влажность,

Rмакс-максимально возможная влажность (при данных t и P)

Влажность -это количество водяного пара в воздухе. Его можно выразить в граммах на кубический метр. Относительная влажность воздуха - это процентное отношение реального давления водяного пара при той же температуре. Так, при +15° давление насыщенного пара равно 12,73 мм рт.ст., что соответствует приблизительно 11 г воды в 1 м3 воздуха. Относительная влажность, равная 75%. соответствует давлению водяного пара в 12,73х0,75=9,55 рт.ст., или примерно 8 г воды на 1 м3 воздуха. Относительную влажность воздуха определяют гигрометром или психрометром.

  • Относительная влажность измеряется при сравнении температуры на двух термометрах — с влажным и сухим шариком; этот прибор называется психрометром. Если оба термометра показывают одинаковую температуру, тогда относительная влажность равна 100%, если влажный термометр показывает меньше, чем сухой, то относительная влажность менее 100%. Для точного определения относительной влажности имеется специальная справочная таблица.

  • В природных условиях влажность меняется в течение суток: она повышается ночью и снижается днем. Кроме того, влажность сильно меняется также и в пространстве (по вертикали и по горизонтали). Так, над самой поверхностью почвы, в гуще травянистого покрова относительная влажность часто составляет почти 100 %, а над травянистым ярусом - всего 50 %. Эти колебания являются причиной различного распределения биоты в экосистемах, а также появления различных приспособлений (компенсации факторов) к условиям влажности.

  • Чтобы оценить большую или меньшую влажность климата, необходимо учитывать также и температуру. Во влажной среде идет медленное испарение и наоборот.

Важным экологическим фактором является иссушение воздуха. Особенно для наземных организмов, имеет огромное значение иссушающие действие воздуха. Животные приспосабливаются, передвигаясь в защищенные места и активный образ жизни ведут ночью.

Соседние файлы в папке Экология