Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
35
Добавлен:
02.04.2015
Размер:
98.3 Кб
Скачать

Механика Лабораторная работа № 13

Министерство образования РФ

Санкт- Петербургский государственный горный институт им. Г.В. Плеханова

(технический университет)

Кафедра общей и технической физики.

МЕХАНИКА

ЛАБОРАТОРНАЯ РАБОТА № 13

определение коэффициента вязкости жидкости

САНКТ-ПЕТЕРБУРГ

2003 г.

Цель работы - определить коэффициент вязкости жидкости методом Стокса.

Общие сведения

Вязкость (внутреннее трение) есть свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одного слоя вещества относительно другого.

Пусть какой-либо слой жидкости или газа течет со скоростью  (. рис.1), а слой, отстоящий от него на расстоянии у, со скоростью  +. Скорость при переходе от слоя к слою изменяется на величину . Отношение /у характеризует быстроту изменения скорости и называется градиентом скорости.

При движении плоских слоев сила трения между ними согласно закону Ньютона

,

где  - коэффициент пропорциональности, называемый коэффициентом вязкости или динамической вязкостью; S - площадь соприкосновения слоев.

Таким образом, коэффициент вязкости численно равен тангенциальной силе, приходящейся на единицу площади соприкосновения слоев, необходимой для поддержания разности скоростей, равной единице, между двумя параллельными слоями вещества, расстояние между которыми равно единице. В СИ единица вязкости - паскаль·секунда.

Пусть в заполненном жидкостью сосуде движется шарик, размеры которого значительно меньше размеров сосуда. Слой жидкости, прилегающий к шарику, движется со скоростью шарика. Соседние слои движутся с меньшими скоростями и, следовательно, между слоями жидкости возникает сила внутреннего трения. Стокс показал, что эта сила при малых значениях скорости пропорциональна скорости движения шарика  и его радиусу r:

,                                (1)

где  - коэффициент вязкости.

На шарик действуют три силы: сила тяжести Р ( рис.2), направленная вниз; сила внутреннего трения и выталкивающая сила Fв, направленные вверх. Шарик сначала падает ускоренно, но затем очень быстро наступает равновесие, т.е.

,                                 (2)

так как с увеличением скорости растет и сила трения. Движение становится равномерным.

Сила тяжести

,

где m - масса шарика; g - ускорение свободного падения.

Так как m = V (где  - плотность материала шарика; V - его объем), то

.                          (3)

Выталкивающая сила по закону Архимеда

,                          (4)

где - плотность жидкости.

Таким образом, формулу (2) с учетом выражений (1), (3) и (4) можно записать в виде

,

откуда

.                              (5)

Формула Стокса справедлива для случая, когда шарик падает в среде, простирающейся безгранично по всем направлениям. Достичь этого в лаборатории практически невозможно, поэтому приходится учитывать размеры сосуда, в котором падает шарик.

Если шарик падает вдоль оси цилиндрического сосуда радиусом R, то формула (5) будет иметь вид

.                            (6)

В нашей установке r<<R, поэтому в качестве расчётной можно пользоваться формулой (5).

Порядок выполнения работы

Установка для проведения эксперимента представляет собой большой цилиндрический сосуд с исследуемой жидкостью. Вдоль образующей цилиндра через каждые 10 см нанесены горизонтальные штрихи. В жидкость опущены термометр для измерения температуры жидкости и ареометр для измерения ее плотности.

Последовательность проведения измерений следующая:

1) измерить при помощи микроскопа диаметр шарика d;

2) через отверстие в крышке прибора опустить шарик в жидкость;

3) измерить секундомером время t прохождения шариком участка пути, на котором скорость падения шарика постоянна;

4) повторить пп.1-3 с другими шариками;

5) определить температуру жидкости T, при которой производились измерения.

Результаты измерений оформить в виде таблицы:

Таблица 1

Физ. величина

Т

ж

d

r

t

l



Ед. измерения

Номер опыта

1

2

n

Подставив измеренные и известные величины в формулу (5), вычислить коэффициент вязкости i для каждого шарика и среднюю квадратичную погрешность по формуле

,

где nчисло измерений с данной жидкостью, n = 10.

При малом числе измерений вывести формулу средней арифметической погрешности  и вычислить ее.

Контрольные вопросы

1. Каков физический смысл коэффициента вязкости и его размерность?

2. В чем состоит сущность закона Стокса?

3. Какие силы действуют на шарик при его движении в жидкости? Как эти силы зависят от времени?

4. Как изменяются скорость и ускорение движения шарика в зависимости от времени?

5. Чем обусловлено введение поправки 2,1 r/R в уравнение (6)?

6. Какие факторы влияют на скорость шарика?

4

Соседние файлы в папке Механика