Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
14
Добавлен:
02.04.2015
Размер:
963.07 Кб
Скачать

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)

Кафедра Общей и технической физики

(лаборатория электромагнетизма)

Исследование электрического поля плоского конденсатора

Методические указания к лабораторной работе № 1

для студентов всех специальностей

САНКТ-ПЕТЕРБУРГ

2009

УДК 531/534 (075.83)

ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ: Лабораторный практикум курса общей физики. Пщелко Н.С., Чернобай В.И. / Санкт-Петербургский горный институт. С-Пб, 2009, 14 с.

Лабораторный практикум курса общей физики по электричеству и магнетизму предназначен для студентов всех специальностей Санкт-Петербургского горного института.

С помощью учебного пособия студент имеет возможность, в предварительном плане, ознакомиться с физическими явлениями, методикой выполнения лабораторного исследования и правилами оформления лабораторных работ.

Выполнение лабораторных работ практикума проводится студентом индивидуально по графику.

Табл. 3. Ил. 2. Библиогр.: 5 назв.

Научный редактор доц. Н.С. Пщелко

©   Санкт-Петербургский горный институт   им. Г.В. Плеханова, 2009 г.

Цель работы:Измерение напряженности электрического поля плоского конденсатора в зависимости от напряжения и расстояния между пластинами, определение электроемкости плоского конденсатора.

Теоретические основы лабораторной работы

Электростатические поля (ЭСП) представляют собой поля неподвижных электрических зарядов. Они достаточно широко используются в промышленности для электрогазоочистки, электростатической сепарации руд и материалов, электростатического нанесения лакокрасочных и полимерных материалов и т. д. Вместе с тем существует целый ряд производств и технологических процессов по изготовлению, обработке и транспортировке диэлектрических материалов, где отмечается нежелательное образование электростатических зарядов и полей, вызванных электризацией перерабатываемого продукта (текстильная, деревообрабатывающая, целлюлозно-бумажная, химическая промышленность и др.). В энергосистемах ЭСП образуются вблизи работающих электроустановок, распределительных устройств и ЛЭП постоянного тока высокого напряжения. При этом имеет место также повышеннаяионизация воздуха(например, в результате коронных разрядов) и возникновение ионных токов.

Свойства электрических полей, их использование в конденсаторах, имеют большое практическое значение и поэтому важны для изучения. Конденсаторы являются неотъемлемой частью всех современных электронных устройств.

Основными физическими параметрами ЭСП являются напряженность поля и потенциалы его отдельных точек. Напряженность ЭСП — векторная величина; определяется отношением силы F, действующей на точечный заряд q, к величине этого заряда, измеряется в вольтах на метр (В/м).

(1)

Энергетические характеристики ЭСП определяются потенциалами точек поля. Потенциалом электростатического поля называется скалярная величина, определяемая потенциальной энергией W единичного положительного заряда q, помещенного в эту точку:

(2)

Другими словами, потенциал есть отношение работы сил поля по перемещению заряда из данной точки поля на бесконечность, отнесенной к величине переносимого заряда.

Биологическое действие. ЭСП — фактор, обладающий сравнительно низкой биологической активностью. В 60-е гг. XX в. биологическое действие ЭСП связывали с электрическими разрядами, возникающими при контакте человека с заряженными или незаземленными предметами. Именно с ним связывали возможное развитие невротических реакций, в т. ч. фобий. В последующие годы ученые пришли к выводу, что ЭСП само по себе обладает биологической активностью. Выявляемые у работающих в условиях воздействия ЭСП нарушения носят, как правило, функциональный характер и укладываются в рамки астеноневротического синдрома и вегетососудистой дистонии. В симптоматике преобладают субъективные жалобы невротического характера (головная боль, нарушение сна, ощущение "удара током" и т. п.). Объективно обнаруживаются нерезко выраженные функциональные сдвиги, не имеющие каких-либо специфических проявлений. Кровь устойчива к воздействию ЭСП. Отмечается лишь некоторая тенденция к снижению показателей красной крови (эритроциты, гемоглобин), незначительному лимфоцитозу и моноцитозу. Биоэффекты сочетанных влияний на организм ЭСП и аэроионов свидетельствуют о синергизме в действии факторов. При этом превалирующим фактором выступает ионный ток, возникающий в результате движения аэроионов ЭСП.

Нормирование ЭСП. В соответствии с "Санитарно-гигиеническими нормами допустимой напряженности электростатического поля" № 1757-77 и ГОСТ 12.1.045—84 ССБТ "Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля" предельно допустимая величина напряженности ЭСП на рабочих местах устанавливается в зависимости от времени воздействия в течение рабочего дня.

Предельно допустимая напряженность ЭСП на рабочих местах обслуживающего персонала не должна превышать следующих величин: при воздействии до 1 ч — 60 кВ/м.

Нормативный документ "Допустимые уровни напряженности электростатических полей и плотности ионного тока для персонала подстанций и ВЛ постоянного тока ультравысокого напряжения" № 6022—91 регламентирует условия сочетанного влияния указанных в названии факторов на персонал, обслуживающий электроустановкипостоянного тока ультравысокого напряжения. В соответствии с требованиями документа ПДУ ЭСП и плотности ионного тока для полного рабочего дня составляют 15 кВ/м и 20 нА/м2; для 5-часового воздействия — 20 кВ/м и 25 нА/м2 .

Профилактика. При выборе средств защиты от статического электричества (экранирование источника поля или рабочего места, применение нейтрализаторов статического электричества, ограничение времени работы и др.) должны учитываться особенности технологических процессов, физико-химические свойства обрабатываемого материала, микроклимат помещенийи др., что определяет дифференцированный подход при разработке профилактических мероприятий. Одним из распространенныхсредств защитыот статического электричества является уменьшение генерации электростатических зарядов или их отвод с наэлектризованного материала, что достигается:

заземлениемметаллических и электропроводных элементов оборудования;

увеличением поверхностей и объемной проводимости диэлектриков;

установкой нейтрализаторов статического электричества.

Заземление проводится независимо от использования других методов защиты. Заземляются не только элементы оборудования, но и изолированные электропроводящие участки технологических установок. Более эффективным средством защиты является увеличение влажности воздуха до 65—75%, когда это возможно по условиям технологического процесса. В качестве средств индивидуальной защитымогут применяться антистатическая обувь, антистатический халат, заземляющие браслеты для защиты рук и др. средства, обеспечивающие электростатическое заземление тела человека.

Большое значение электростатические поля имеют в конденсаторах – устройствах для накопления зарядов.

Конденсатор состоит из двух проводников (обкладок), разделенных диэлектриком. Обкладкам придают такую форму, чтобы поле, создаваемое накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками в конденсаторе. Этому условию удовлетворяют: 1) две плоские параллельные пластины; 2) два коаксиальных цилиндра; 3) две концентрические сферы. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, цилиндрические и сферические. Основной характеристикой конденсатора является его емкость – физическая величина, равная отношению заряда конденсатора Q к разности потенциалов между его обкладками U.

, (3)

причем под зарядом конденсатора Q понимают заряд одной из его пластин.

Контроль уровней ЭСП в настоящее время затруднен. Рекомендованные приборы (ИНЭП-1, ИНЭП-20Д, ИНЭСП-1, ИЭЗ-П, ИНЭП-3) предназначены для измерения напряженности ЭСП на поверхности диэлектриков. Попытки оценивать с их помощью ЭСП в пространстве (на рабочих местах, перед экранами телевизоров, дисплееви т. п.), ведут к большим погрешностям в результатах измерений. Из разработанных в последнее время приборов можно рекомендовать измеритель электростатического потенциала ИЭСП-01 и измеритель напряженности электростатического поля ПЗ-27. В настоящей лабораторной работе используется измеритель напряженности электрического поля (показан на рис. 1 позиция 3 и на рис. 2). Принцип его действия основан на явлении электростатической индукции: в электрическом поле на вращающихся лопастях измерителя индуцируются наведенные заряды. При вращении лопастей изменяется площадь их перекрытия с противоэлектродом, находящимся за лопастями. Противоэлектрод надежно изолирован от остальных частей измерителя, поэтому заряд конденсатора, который образуют подвижная лопасть и противоэлектрод, не меняется. Поэтому в соответствии с формулой (3) для связи между напряжением и емкости при изменении емкости за счет изменения площади перекрытия обкладок на конденсаторе возникает изменяющееся во времени переменное напряжение. По его величине и можно судить о напряженности измеряемого электрического поля.

Известно, что напряженность электрического поля и потенциал связаны между собой соотношением

(4)

.

В однородном электрическом поле соотношение (4) может быть представлено

, (5)

где U – напряжение между точками поля, которые находятся на расстоянии x; Ex – проекция на ось x.

Напряженность электрического поля между пластинами плоского конденсатора, находящимися на расстоянии d, можно определить по формуле:

, (6)

где U – напряжение, подводимое на пластины конденсатора.

Электроемкость плоского конденсатора рассчитывается по выражению:

, (7)

где 0 – электрическая постоянная, – относительная диэлектрическая проницаемость среды между пластинами конденсатора (для воздуха   1).

Подставляя значение для d из формулы (6) в (7), получим выражение для емкости, которую можно рассчитать по измеренной напряженности:

, (8)

где S – площадь одной из пластин конденсатора, q – заряд конденсатора.

Поскольку обкладки конденсатора имею противоположные знаки зарядов, они притягиваются друг к другу. Сила притяжения обкладок на единицу площади, т.е. так называемое пондеромоторное давление p, рассчитывается по формуле:

. (9)

А сила притяжения – по формуле:

. (10)

Учитывая малость значения  0 , обычно электростатические силы оказываются невелики. Однако, при малых расстояниях между обкладками появляются большие электростатические поля и эти силы становятся значительными. На их использовании основана работа электростатических крепежных устройств и электроадгезионный способ соединения материалов.

Энергия поля конденсатора может быть рассчитана по формулам:

(11)

Соседние файлы в папке Лаб работы Электромагнетизм 2009