Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
14
Добавлен:
02.04.2015
Размер:
180.22 Кб
Скачать

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)

Кафедра Общей и технической физики

(лаборатория электромагнетизма)

Измерение низких сопротивлений материалов

Методические указания к лабораторной работе № 8

для студентов всех специальностей

САНКТ-ПЕТЕРБУРГ

2009

УДК 531/534 (075.83)

ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ: Лабораторный практикум курса общей физики. Пщелко Н.С., Чернобай В.И. / Санкт-Петербургский горный институт. С-Пб, 2009, 12 с.

Лабораторный практикум курса общей физики по электричеству и магнетизму предназначен для студентов всех специальностей Санкт-Петербургского горного института.

С помощью учебного пособия студент имеет возможность, в предварительном плане, ознакомиться с физическими явлениями, методикой выполнения лабораторного исследования и правилами оформления лабораторных работ.

Выполнение лабораторных работ практикума проводится студентом индивидуально по графику.

Табл. 3. Ил. 1. Библиогр.: 5 назв.

Научный редактор доц. Н.С. Пщелко

©   Санкт-Петербургский горный институт   им. Г.В. Плеханова, 2009 г.

Цель работы:Определение удельного сопротивления, контактного сопротивления, и удельной теплопроводности металлов низкоомных материалов с помощью измерительного усилителя.

Теоретические основы лабораторной работы

В качестве проводниковых материалов для передачи электроэнергии и для работы различных её потребителей используются в основном металлы. Несмотря на низкое удельное сопротивление, при большой длине металлические проводники могут иметь заметное сопротивление, что приводит к потерям электроэнергии при её передаче и влияет на работу потребителей. Например, из-за большого числа витков активное (омическое) сопротивление катушки индуктивности может оказаться соизмеримым с её реактивным сопротивлением. Часто измерение сопротивления металлов затруднено из-за малости его значения, что приводит к необходимости использования специальных методик. Малое значение сопротивления металлических проводников так же приводит к необходимости учета контактного сопротивления.

Указанные особенности применения металлических проводников должны учитываться при разработке и эксплуатации всех электрических устройств, например, электрических машин, нагревательных устройств, осветительных приборов, радиоэлектронных устройств и т.д. Изучение закономерностей протекания электрического тока в металлах позволит обобщить приобретенные знания и успешно использовать их как в лабораторных условиях, так и в производстве.

Экспериментальные законы и электронная теория. В основе классической электронной теории металлов, развитой Друде и Лоренцом, лежит представление об электронном газе, состоящем из свободных (коллективизированных) электронов. Электронному газу приписываются свойства идеального газа, т.е. движение электронов подчиняется законам классической статистики. Если считать, что атомы в металле ионизированы однократно, то концентрация свободных электронов будет равна концентрации атомов и может быть рассчитана по формуле

, (1)

где оплотность материала; А – атомная масса; – число Авогадро.

В соответствии с атомно-кинетической теорией идеальных газов средняя кинетическая энергия электронов, находящихся в состоянии непрерывного хаотического движения, линейно возрастает с температурой:

, (2)

где – средняя скорость теплового движения;kпостоянная Больцмана. Температуре 300 К соответствует средняя скорость порядка м/с,m0 – масса электрона.

Приложение внешнего напряжения приводит к увлечению электронов в направлении действующих сил поля, т.е. электроны получают некоторую добавочную скорость направленного движения, благодаря чему и возникает электрический ток. Плотность тока в проводнике определяется выражением

(3)

где e – заряд электрона, – средняя скорость направленного движения носителей заряда (скорость дрейфа).

В медном проводнике плотности тока соответствует скорость дрейфа электронов порядка, т.е. можно считать, что в реальных условиях выполняется равенство.

В промежутках между столкновениями с узлами решетки электроны при воздействии электрического поля движутся с ускорением

.

Максимальная скорость дрейфа, приобретаемая электроном к концу свободного пробега,

,

где – время свободного пробега.

После столкновения для большинства электронов скорость направленного движения падает до нуля, т.е. накопленная кинетическая энергия передается атомам решетки. Поэтому среднее значение скорости дрейфа за время свободного пробега равно половине максимального:

.

Поскольку , то при расчете времени свободного пробега добавку скоростиможно не учитывать:

,

где – средняя длина свободного пробега электронов.

Подстановка полученных соотношений в формулу для плотности тока приводит к следующему результату:

, (4)

т.е. плотность тока пропорциональна напряженности электрического поля, а это есть аналитическое выражение закона Ома.

Таким образом, в рамках классической теории выражение для удельной электропроводности:

. (5)

Представления о свободных электронах позволяет легко прийти к экспериментальному закону Видемана – Франца, устанавливающему связь между проводимостью и теплопроводностью металла. Электроны в металле переносят не только электрический заряд, но и выравнивают в нем температуру, обеспечивая высокую теплопроводность. Благодаря высокой концентрации свободных электронов, электронная теплопроводность преобладает над другими механизмами переноса теплоты. В соответствии с атомно-кинетической теорией идеального газа электронная теплопроводность может быть записана в виде

.

Поделив это выражение на удельную проводимость, найденную из (4), с учетом формулы (2) получим

, (6)

т.е. отношение удельной теплопроводности к удельной проводимости металла при данной температуре есть величина постоянная, не зависящая от природы проводника. Отсюда, в частности, следует, что хорошие проводники электрического тока являются и хорошими проводниками теплоты. Константа получила название числа Лоренца.

Экспериментальные значения числа Лоренца при комнатной температуре для подавляющего числа металлов хорошо согласуются с теоретическим значением.

Для металлических образцов реальных размеров, учитывая, что удельное сопротивление в среднем варьируется от 10-7 до 10-5 Омм, величины сопротивлений оказываются также малы. Поэтому при пропускании через образцы даже значительного тока падения напряжения на них оказываются невелики, что затрудняет измерение этих напряжений. В связи с этим в данной работе напряжение измеряется с помощью усилителя (так называемый четырехпроводный метод измерения): истинное значение напряжение на образце усиливается в К раз. Таким образом напряжение на образце Uобр находится по формуле

, (7)

где U – измеряемое мультиметром на выходе усилителя напряжение, U0 – точность установки “нуля” вольтметра.

Ещё одной особенностью измерений является то, что контактное сопротивление, обусловленное растеканием тока в объём образца, оказывается соизмеримо и даже на практике значительно больше самого измеряемого сопротивления. Его большое значение обусловлено тем, что растекание тока в объем стержня происходит с малой площади контакта. Поэтому напряжение с образца следует снимать в точках, удаленных на некоторое расстояние от точек к которым подводится электрический ток через образец.

Схема установки

Рис.1 Принципиальная электрическая схема установки

ИП – источник питания, А – амперметр, V – вольтметр, У – измерительный усилитель, R – исследуемый образец с малым сопротивлением

Соседние файлы в папке Лаб работы Электромагнетизм 2009