Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Клин.биохимия+ответы.doc
Скачиваний:
159
Добавлен:
10.04.2015
Размер:
673.79 Кб
Скачать

1.Общее понятие об обмене веществ. Катаболизм и анаболизм. Основные этапы. Значение АТФ и др. макроэргов.

Обмен вещ-в (метаболизм) – вся совокупность бх-реакций, протекающих в организме.

Ф-ии метаболизма:

1) снабжение клеток Е, образующейся при расщеплении пищи (экзэргические) – используется для реакции биосинтеза;

2) синтез специфических для организма соединений (эндэргические).

2 стадии метаболизма: анаболизм (синтезе сложных молекул из более простых с накоплением энергии) и катаболизм (расщепление крупных молекул до более простых с выделением Е).

Катаболизм, 3 стадии:

1.превращение полимера в мономеры: Б,Ж,У → АМК, моносахариды, ж.к, глицерин.

2. превращение мономеров в унифицированный продукт:АМК,моносахара,ж.к,глицерин→ацетилКоА

3.третья стадия катаболизма – первая стадия анаболизма. АцетилКоА идет в ЦТК, в ЦТК образуются субстраты, используемые на синтез новых соединений (α-кетоглутарат – глутамат, сукцинилКоА – гем); АДФ фосфорилируется в АТФ.

Макроэрги́ческие соедине́ния - группа природных веществ, молекулы которых содержат богатые энергией, или макроэргические, связи; присутствуют во всех живых клетках и участвуют в накоплении и превращении энергии. Разрыв макроэргических связей в молекулах М.с. сопровождается выделением энергии, используемой для биосинтеза и транспорта веществ, мышечного сокращения, пищеварения и других процессов жизнедеятельности организма. Все известные М.с. содержат фосфорильную (—РО3Н2) или ацильную группу.

АТФ - служит универсальным переносчиком и основным аккумулятором химической энергии в живых клетках, кофермент многих ферментов, донор энергии, необходимой для протекания биосинтетических реакций.

Макроэрги: нуклеозидтрифосфаты и нуклеозиддифосфаты (АТФ, ГДФ и их аналоги), ацетил-КоА, сукцинил-КоА, креатинфосфат, фосфоенолпируват

3 Биосинтез и мобилизация гликогена, последовательность реакций. Биол.Роль. Регуляция активности фосфорилазы и гликогенсинтетазы.

Глю-6-фосфат ↔ глю-1-фосфат, Ф-фосфоглюкомутаза

Глю-1-ф +УТФ → УДФ-глю +ФФ (наращивание амилозной цепи крахмала)

6Н10О5)n-4 + УДФ-глю → (С6Н10О5)n+1 +1УДФ, ф-гликогенсинтетаза

(α-1,4-амилоза)

Источник глю ля синтеза является УДФ-глю. Для синтеза необходима затравка, для активации гликоген-синтетазы. Синтез амилопектина (α-1,6) катализирует «ветвящийся Ф» - бранг-энзим, он транспортирует 6-7 остатки амилозы (α-1,4) к ОН-гр при С6, образуя точки ветвления – цепи амилопектина. Чем больше точек, тем больше расщепление.

Гликоген - основной запасной углевод человека и животных, энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы.

Гликогенсинтетаза – кат р-ию обр-ия α-1,4-амилозы, фосфорилаза – кат расщепление α-1,4-гликозидных связей амилозы до 4х остатков глю (затравки). Активность Ф зависит от действия гормонов инсулина, глюкагона, адреналина.

Активация фосфорилазы и гликогенсинтетазы:

- осуществляется через АЦС-систему, при уч. гормонов путем ковалентной модификации (фосфорилирование-дефосфорилирование)

- фосфорилаза им. 2 формы: «а» - активная, из 4х субъединиц, «b» - неакт., сост. из 2х субъединиц. Активация фосворилазы: 2 «b» + 4АТФ → 1 «а» + 4АДФ, ф-киназа фосфорилазы. Фосфорилаза активна в фосфорилированной форме. Гликогенсинтетаза – неактивна в фосфорилированной форме (активна в дефосфор.). Регулируют активность этих Ф гормоны: инсулин, глюкагон, адреналин.

4. Роль анаэробного и аэробного распада глюкозы в мышцах. Судьба молочной кислоты.

Анаэробный – см.билет№5

глю→глю-6-ф→фру-6-ф→фру1,6дифосфат→глицероальдегид3ф+дигидрооксиацетон→глицероальдегид-3-ф→1,3-ДФГК→3ФГК→2ФГК→фосфоенолПВК→ПВК→лактат.

Ф: 1)гексокиназа, 2)фосфогексоизомераза, 3)фосфофруктокиназа, 4)альдолаза, 5)триозофосфоизомераза,

6)глицероальдегид-3-фосфат-ДГ, это центральная реакция гликолиза, р-ия гликолитической оксигенации, она подготавливает 2 р-ии субстратного фосфорилирования, конечные продукты обмена, 7)фосфоглицерокиназа, 8)фосфоглицеромутаза, 9)энолаза, 10)дефосфорилирование, пируват-киназа,11) ЛДГ,2НАДН-из 6. Лактат- тупик метаболизма. Превращения лактата идет через ПВК, ПВК идет на глюконеогенез, или окислительное декарбоксилирование – АцКоА.

Интенсивная работа мышц. Дефицит АТФ→ ↑гликолиза, ↓глю-6ф, ↓активности гликогенсинтетазы, ↑фосфоролиз гликогена(распад), ↑фосфорилазы.

В период расслабления мышц (в покое). Накопление АТФ, цитрата → ↓гликолиза, ↑глю-6ф, ↑синтеза гликогена. В покое и при избытке питания У: глю расщепляется до АцКоА, избыток его используется на синтез Л, ведет к ожирению.

Аэробный распад У – основной путь превращения глю. Делится на 3 этапа: 1)до ПВК полностью совпадает с гликолизом до ПВК; 2)окислительное декарбоксилирование ПВК – необратимый процесс, с образованием АцКоА; 3)ЦТК.

1) глю→глю-6ф→фру6ф→фру1,6дифосфат→глицероальдегид3ф+дигидрооксиацетон→глицероальдегид-3-ф→1,3-ДФГК→3ФГК→2ФГК→фосфоенолПВК→ПВК, 6АТФ-окислит.фосфорил, 4-субстратного, но минус 2АТФ на 1 р-ию.(в цитозоле)

2)Окислительное декарбоксилирование ПВК (на внутр.стороне мембраны митохондрий).Синтезирует мультиферментный пируватдегидрогеназный комплекс, вкл.3 Ф и 5Ко-факторов:ТДФ(В1), ЛК, НsКоА(В3), ФАД(В2), НАД(РР); Е1-пируват-ДГ декарбоксилирующая, Е2-липацетил-ТФ, Е3-липоамид-ДГ

1. 2СН3-С(О)-СООН + ТДФ-Н → 2 СН3-СНОН-ТДФ-Е1 (оксиэтил-ТДФ)

2. 2 СН3-СНОН-ТДФ-Е1 + 2ЛК(SS)-E2 → 2СН3-С(О)~S- ЛК(НS)-Е2 (ацетил-липоат)+2ТДФН- Е1

3. 2СН3-С(О)~S- ЛК(НS)-Е2 + 2 НsКоА, E2 → 2СН3-С(О)~SКоА(ацетилКоА)+ЛК(HS)(HS)Е2 – восстановленная форма липолевой к-ты.

4. ЛК(HS)(HS)Е2 + 2ФАД-Е3 → 2ФАДН2 - Е3 +2 ЛК(S)(S)- E2 –ОКИСЛЕННАЯ ФОРМА

5. 2ФАДН2 - Е3 + 2НАД → 2НАДН(В ДЫХ.ЦЕПЬ 6 АТФ)+ 2ФАД-Е3

Переключение анаэробного пути на аэробный регулируется кислородом, соотношением НАД/НАДН, АДф/АТФ.

5 Пути образования глюкозы в организме. Биосинтез глюкозы (глюконеогенез). Возможные предшественники, последовательность реакций. Глюкозолактатный цикл (цикл Кори). Физиологическое значение процесса глюконеогенеза.

Центральным биосинтетическим путем является образование глюкозы из неуглеводных предшественников. У всех высших животных и человека биосинтез глюкозы абсолютно необходимый процесс. Глюкоза крови служит единственным или главным источником энергии для нервной системы (в том числе и для мозга), а также для почек, семенников, эритроцитов и для всех тканей эмбриона. У человека один только мозг потребляет 120 г глюкозы в сутки.

Образование глюкозы из неуглеводных предшественников называется глюконеогенезом (образование нового сахара).

В процессе глюконеогенеза глюкоза синтезируется из лактата, пирувата, глицерола, и большинства аминокислот, из промежуточных продуктов цикла лимонной кислоты.

Глюконеогенез протекает в печени и значительно менее интенсивно – корковом веществе почек.

При гликолизе глю превращается в пируват, при глюконеогенезе пируват превращается в глюкозу. Глюконеогенез это не обращение гликолиза, т.к. в гликолизе есть 3 необратимые стадии, катализируемые гексокиназой, фосфофруктокиназой и пируваткиназой.

Пути глюконеогенеза обходят эти 3 необратимые реакции гликолиза при помощи следующих новых этапов:

  1. Фосфоенолпируват ббразуется из пирувата через оксалоацетат.

Первый этап в обходной последовательности реакций катализируется митохондриальной пируваткарбоксилазой. Этот биотинзависимый фермент катализирует образование оксалоацетата из пирувата:

Пируват + СО2+АТФоксалоацетат+АДФ+Рн

Пируваткарбоксилаза – регуляторный фермент; в отсутствии ацетил-КоА который служит для нее положительным регулятором, она почти полностью лишена активности.

Оксалоацетат, образующийся в митохондриях из пирувата обратомо восстанавливается за счет НАДН с образованием малата:

Митох. НАДН+Н+ + Оксалоацетат НАД+малат

Малат из митохондрий поступает в цитозоль. В цитозоле малат под действием цитозольной НАД-зависимой малатдегидрогеназы превращается в оксалоацетат:

Цитозоль Малат + НАД+Оксалоацетат+ НАДН+Н+

Дальше оксалоацетат под действием фосфоенолпируваткарбоксикиназы превращается в фосфоенолпируват:

Оксолоацетат+ГТФФеП+СО2 +ГДФ

Донором фосфата в этой реакции служит ГТФ – гуанозинтрифосфат.

  1. Вторая реакция гликолиза, которая не может использоваться для глюконеогенеза – это реакция фосфорилирования фру-6-ф, катализируемая фосфофруктокиназой.

В глюконеогенезе действует обходной путь с участием фруктозодифосфатазы, которая катализирует необратимый гидролиз фру-1,6-дф с образованием фру-6-ф

Фру-1,6-дф фру-6-ф

Фруктозодифосфотаза – регуляторный фермент, нуждается в ионах Mg2+ . Ингибируется АМФ, активируется АТФ.

  1. Третьей обходной реакции в синтезе глюкозы является дефосфорилирование глю-6-ф с образованием глю.

Дефосфорилирование осуществляется под действием глюкозы-6-фосфатазы:

Глю-6-фглю

Глюконеогенез требует значительных затрат энергии. Стадии глюконеогенеза, требующие затрат энергии:

Пир + СО2 + АТФоксалоацетат + АДФ + Фн

Оксалоацетат + ГТФФЕП + СО2 + ГДФ

3ФГК1,3ФГК

На каждую молекулу глю потребуется 6 высокоэнергетических фосфатных групп – 4 от АТФ и 2 от ГТФ.

Кроме того, для восстановительных этапов требуется 2 молекулы НАДН:

1,3 ДФГК + НАДН + Н+3ФГА + НАД+

Суммарная реакция:

2Пир + 4 АТФ + 2 ГТФ + 2 НАДН + 2 Н+ + 4 Н2О Глю + 2 НАД+ + 4 АДФ + 2 ГДФ + 6 Рн

Главную роль из метаболитов ЦТК, используемых в глюконеогенезе играют: цитрат, изоцитрат, -кетоглутарат, сукцинат, фумарат, малат.

Важно отметить, что в норме ацетил-КоА не используется как предшественник глю, так как он не может превратиться в пируват.

В глюкозу могут превращаться глюкогенные аминокислоты: аланин, глутамат, аспартат, которые превращаются соответственно в пируват, оксалоацетат и -кетоглутарат:

Глукогенные аминокислоты

Превращаются в пир: ала, сер, цис, гли

Превращаются в оксалоацетат: асп, асн

Превращаются в сукцинил-КоА: вал, тре, мет

Превращаются в -кетоглутарат: глу, глн, про, арг, гис.

Поставляют атомы углерода для синтеза глю и кетоновых тел: фен,тир, изолей, лиз, три

Синтез глю из малых молекул предшественников идет в период после восстановления после мышечной нагрузки, например после бега на сто метров. В этом случая в качестве источника энергии служит гли, который окисляется с образованием лак и выделением АТФ. Т.к. кислорода в тканях не хватает, лактат не может подвергаться дальнейшим превращениям и поступает в кровь.

Закончивший стометровку спринтер в начале дышит тяжело, но постепенно его дыхание выравнивается и становится нормальным. К этому периоду возвращается к норме и содержание лак. За время восстановления (до 30 мин) лактат удаляется из крови в печень и превращается в процессе гликонеогенеза в глю крови. Глю крови возвращается в мышцы:

Алкоголь тормозит глюконеогенез.

Потребление больших количеств алкоголя резко тормозит глюконеогенез в печени, вследствие чего понижается содержание глю в крови, т.е. возникает гипогликемия. Это особенно сказывается после тяжелой физической нагрузки и на голодный желудок, уровень глю может понизиться до 40 и даже 30% от нормы. Гипогликемия не благоприятно сказывается на функции мозга. Она особенно опасна для тех областей мозга, которые контролируют температуру тела. Температура тела может понизиься на 20С. Старый обычай, предписывающий давать спасенным на море или в пустыне голодным или обессилившим людям водку, физиологически неоправдан и даже опасен; в таких случаях следует давать глю.

Биосинтез глюкозы (глюконеогенез). Возможные предшественники, последовательность реакций. Глюкозолактатный цикл (цикл Кори). Физиологическое значение.

Схема глюконеогенеза:

В митохондриях: Лактат ↔ПВК → оксалоацетат (для этой р-ии:биотин,СО2,АТФ,пируваткарбоксилаза)→ малат .

Малат → (карбоксилаза, +ГТФ,- СО2) ФЭПВК(обход пируваткиназы) ↔ фру-1,6-дифосфат (обход фосфофруктокиназы) → (фосфотаза, -Фн) фру-6ф → (изомераза) глю-6ф (обход гексокиназы) → (глю-6-фосфотаза, -Фн) глюкоза –печень, почки

2 лактата + 6 АТФ → глюкоза.

Цикл Кори (глюкозо-лактатный цикл)

ПЕЧЕНЬ КРОВЬ МЫШЦЫ

Глю → глю → глю

↑ ↓

Гликоген

Лактат ← 4/5 лактата ← 2 лактата

ПВК

АцКоА → ЦТК → СО2 + Н2О + АТФ

Значение цикла Кори:

- обеспечивает утилизацию лактата

- предотвращает накопление лактата и лактатный ацидоз

Глюконеогенез:

- образование глю из неуглеводных продуктов

- обр-ие глю из углеводных продуктов – обращение гликолиза

- т.к. 3 киназные р-ии гликолиза необратимы. То глюконеогенез идет путем сочетания прямых р-ий и р-ий, идущих в обход необратимых

- субстраты глюкогенеза: 1.лактат – анаэроб гликолиза 2.глицероальдегид – липолиз 3.аминокислоты – глюкогенные

Схема глюконеогенеза:

В митохондриях: Лактат ↔ПВК → оксалоацетат (для этой р-ии:биотин,СО2,АТФ,пируваткарбоксилаза)→ малат .

Малат → (карбоксилаза, +ГТФ,- СО2) ФЭПВК(обход пируваткиназы) ↔ фру-1,6-дифосфат (обход фосфофруктокиназы) → (фосфотаза, -Фн) фру-6ф → (изомераза) глю-6ф (обход гексокиназы) → (глю-6-фосфотаза, -Фн) глюкоза –печень, почки

2 лактата + 6 АТФ → глюкоза