Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭКЗАМЕН.docx
Скачиваний:
7
Добавлен:
11.12.2015
Размер:
177.45 Кб
Скачать

Основные положения

Атомно-молекулярная теория базируется на следующих законах и утверждениях:

  • Все вещества состоят из атомов

  • Атомы одного химического вещества (химический элемент) обладают одинаковыми свойствами, но отличаются от атомов другого вещества

  • При взаимодействии атомов образуются молекулы (гомоядерные — простые вещества, гетероядерные — сложные вещества)

  • При физических явлениях молекулы не изменяются, при химических происходит изменение их состава

  • Химические реакции заключаются в образовании новых веществ из тех же самых атомов, из которых состояли исходные вещества

  • Закон сохранения массы — масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции

  • Закон постоянства состава (закон кратных отношений) — любое определенное химически чистое соединение независимо от способа его получения состоит из одних и тех же химических элементов, причем отношения их масс постоянны, а относительные числа их атомов выражаются целыми числами

  • Аллотропия — существование одного и того же химического элемента в виде нескольких простых веществ, различных по строению и свойствам.

Вытекающие законы и положения

  • Закон Авогадро (закон объёмных отношений)

  • Относительная атомная масса

  • Моль (единица)

  • Закон эквивалентов

Закон Авога́дро — одно из важных основных положений химии, гласящее, что «в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул»

.

Эквивалент вещества или Эквивалент — это реальная или условная частица, которая может присоединять, высвобождать или другим способом быть эквивалентна катиону водорода в ионообменных реакциях или электрону в окислительно-восстановительных реакциях.

Например, в реакции эквивалентом будет реальная частица — ион , а в реакции эквивалентом будет мнимая частица .

Под эквивалентом вещества также часто подразумевается количество эквивалентов вещества или эквивалентное количество вещества — число моль вещества, эквивалентное одному моль катионов водорода в рассматриваемой реакции.

Основные понятия

Элементарная частица. Это все частицы, не являющиеся атомными ядрами или атомами (протон — исключение). В узком смысле — частицы, которые нельзя считать состоящими из других частиц (при заданной энергии воздействия/наблюдения). Элементарными частицами также являются электроны (-) и позитроны (+).

Атом. Наименьшая частица химического элемента, обладающая всеми его свойствами. Атом состоит из ядра и «облака» электронов вокруг него. Ядро состоит из положительно заряженных протонов и нейтральных нейтронов. Взаимодействуя, атомы могут образовывать молекулы. Атом — предел химического разложения любого вещества. Простое вещество разлагается на атомы одного вида, сложное вещество — на атомы разных видов. Атомы (точнее, атомные ядра) неделимы химическим путём.

Молекула. Частица, состоящая из двух или более атомов, которая может самостоятельно существовать. Имеет постоянный качественный и количественный состав. Её свойства зависят от атомов, входящих в её состав, и от характера связей между ними, от молекулярной структуры и от пространственного расположения (изомеры). Может иметь несколько разных состояний и переходить от одного состояния к другому под действием внешних факторов. Свойства вещества, состоящего из определённых молекул, зависят от состояния молекул и от свойств молекулы.

Вещество. В соответствии с классическими научными воззрениями различаются две физические формы существования материи — вещество и поле. Вещество — это форма материи, обладающая массой (масса не равна нулю). Химия изучает большей частью вещества, организованные в атомы, молекулы, ионы и радикалы. Те, в свою очередь, состоят из элементарных частиц: электронов, протонов, нейтронов и т. д.

Моль. Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц.

День моля — неофициальный праздник, отмечаемый химиками Северной Америки 23 октября между 6:02 утра и 6:02 вечера (6:02 10/23 в американской нотации времени и даты). Эти время и дата выбраны в соответствии с численным значением постоянной Авогадро, приблизительно равной 6,02·1023 моль−1. Праздник также отмечается во многих школах США и Канады.

Моля́рная ма́сса вещества — масса одного моля вещества.

Основные законы Химии

Закон Авога́дро — одно из важных основных положений химии, гласящее, что «в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул» Первое следствие из закона Авогадро: один моль любого газа при одинаковых условиях занимает одинаковый объём. В частности, при нормальных условиях, т. е. при 0 °C (273К) и 101,3 кПа, объём 1 моля газа, равен 22,4 л. Этот объём называют молярным объёмом газа Vm. Пересчитать эту величину на другие температуру и давление можно с помощью уравнения Менделеева-Клапейрона:.

Второе следствие из закона Авогадро: молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа по второму.

Закон кратных отношений — Если один и тот же элемент образует несколько соединений с другим элементом, то на одну и ту же массовую часть первого элемента будут приходиться такие массовые части второго, которые относятся друг к другу как небольшие целые числа.

Состав оксидов азота (в процентах по массе) выражается следующими числами:

Закись азота N2O

Окись азота NO

Азотистый ангидрид N2O3

Двуокись азота NO2

Азотный ангидрид N2O5

N

63.7

46.7

36.8

30.4

25.9

O

36.3

53.3

63.2

69.6

74.1

Частное O/N

0.57

1.14

1.71

2.28

2.85

Закон постоянства состава (Ж.Л. Пруст, 1801—1808гг.) — любое определенное химически чистое соединение независимо от способа его получения состоит из одних и тех же химических элементов, причем отношения их масс постоянны, а относительные числа их атомов выражаются целыми числами. Это один из основных законов химии.

Закон сохранения массы — закон физики, согласно которому масса физической системы сохраняется при всех природных и искусственных процессах.

Кисло́ты — химические соединения, способные отдавать катион водорода (кислоты Брёнстеда) либо соединения, способные принимать электронную пару с образованием ковалентной связи (кислоты Льюиса).

В быту и технике под кислотами обычно подразумеваются кислоты Брёнстеда, образующие в водных растворах избыток ионов гидроксония H3O+. Присутствие этих ионов обуславливает кислый вкус растворов кислот, способность менять окраску индикаторов и, в высоких концентрациях, раздражающее действие кислот. Подвижные атомы водорода кислот способны замещаться на атомы металлов с образованием солей, содержащих катионы металлов и анионы кислотного остатка.

Классификация кислот

Кроме подразделения на кислоты Льюиса и кислоты Брёнстеда, последние принято классифицировать по различным формальным признакам:

  • По содержанию атомов кислорода:

  • бескислородные (HCl, H2S);

  • кислородсодержащие (HNO3, H2SO4).

  • По количеству кислых атомов водорода:

  • одноосновные (HNO3);

  • двухосновные (H2SeO4);

  • трёхосновные (H3PO4, H3BO3);

  • многоосновные.

  • По силе

    • Сильные — диссоциируют практически полностью, константы диссоциации больше 1·10−3 (HNO3);

    • Слабые — константа диссоциации меньше 1·10−3 (уксусная кислота Kд= 1,7·10−5).

  • По устойчивости

    • Устойчивые (H2SO4);

    • Неустойчивые (H2CO3).

  • По принадлежности к классам химических соединений

    • Неорганические (HBr);

    • Органические (HCOOH,CH3COOH);

  • По летучести

    • Летучие (HNO3,H2S, HCl);

    • Нелетучие (H2SO4) ;

  • По растворимости в воде

    • Растворимые (H2SO4);

    • Нерастворимые (H2SiO3);

Химические свойства кислот

  • Взаимодействие с основными оксидами с образованием соли и воды:

  • Взаимодействие с амфотерными оксидами с образованием соли и воды:

  • Взаимодействие со щелочами с образованием соли и воды (реакция нейтрализации):

  • Взаимодействие с нерастворимыми основаниями с образованием соли и воды, если используемая кислота растворима[32]:

  • Взаимодействие с солями, если выпадает осадок или выделяется газ:

  • Сильные кислоты вытесняют более слабые из их солей:

(в данном случае образуется неустойчивая угольная кислота H2CO3 , которая сразу же распадается на воду и углекислый газ)

  • Металлы, стоящие в ряду активности до водорода, вытесняют его из раствора кислоты (кроме азотной кислоты HNO3 любой концентрации и концентрированной серной кислоты H2SO4), если образующаяся соль растворима:

  • С азотной кислотой и концентрированной серной кислотами реакция идёт иначе:

  • Для органических кислот характерна реакция этерификации (взаимодействие со спиртами с образованием сложного эфира и воды):

Например:

Окси́д (о́кисел, о́кись) — бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом.

Классификация в зависимости от химических свойств различают:

  • Солеобразующие оксиды:

    • основные оксиды (например, оксид натрия Na2O, оксид меди(II) CuO): оксиды металлов, степень окисления которых I—II;

    • кислотные оксиды (например, оксид серы(VI) SO3, оксид азота(IV) NO2): оксиды металлов со степенью окисления V—VII и оксиды неметаллов;

    • амфотерные оксиды (например, оксид цинка ZnO, оксид алюминия Al2О3): оксиды металлов со степенью окисления III—IV и исключения (ZnO, BeO, SnO, PbO);

  • Несолеобразующие оксиды: оксид углерода(II) СО, оксид азота(I) N2O, оксид азота(II) NO.

Химические свойства Основные оксиды

1. Основный оксид + cильная кислота → соль + вода

2. Сильноосновный оксид + вода → гидроксид

3. Сильноосновный оксид + кислотный оксид → соль

4. Основный оксид + водород → металл + вода

Примечание: металл менее активный, чем алюминий.

Кислотные оксиды

1. Кислотный оксид + вода → кислота

Некоторые оксиды, например SiO2, с водой не вступают в реакцию, поэтому их кислоты получают косвенным путём.

2. Кислотный оксид + основный оксид → соль

3. Кислотный оксид + основание → соль + вода

Если кислотный оксид является ангидридом многоосновной кислоты, возможно образование кислых или средних солей:

4. Нелетучий оксид + соль1 → соль2 + летучий оксид

5. Ангидрид кислоты 1 + безводная кислородосодержащая кислота 2 → Ангидрид кислоты 2 + безводная кислородосодержащая кислота 1

(2Cl2O7)

Амфотерные оксиды

При взаимодействии с сильной кислотой или кислотным оксидом проявляют основные свойства:

При взаимодействии с сильным основанием или основным оксидом проявляют кислотные свойства:

(в водном растворе)

(при сплавлении)

Получение

1. Взаимодействие простых веществ (за исключением инертных газов, золота и платины) с кислородом:

При горении в кислороде щелочных металлов (кроме лития), а также стронция и бария образуются пероксиды и надпероксиды:

2. Обжиг или горение бинарных соединений в кислороде:

3. Термическое разложение солей:

4. Термическое разложение оснований или кислот:

5. Окисление низших оксидов в высшие и восстановление высших в низшие:

6. Взаимодействие некоторых металлов с водой при высокой температуре:

7. Взаимодействие солей с кислотными оксидами при сжигании кокса с выделением летучего оксида:

8. Взаимодействие металлов с кислотами-окислителями:

9. При действии водоотнимающих веществ на кислоты и соли:

10. Взаимодействие солей слабых неустойчивых кислот с более сильными кислотами:

Гидрокси́ды (гидроо́кисиды) — соединения металлов с водой. Известны гидроксиды почти всех химических элементов; некоторые из них встречаются в природе в виде минералов. Гидроксиды щелочных металлов называются щелочами.

Классификация

В зависимости от того, является ли соответствующий оксид основным, кислотным или амфотерным, соответственно различают:

  • основные гидроксиды (основания) — гидроксиды, проявляющие основные свойства (например, гидроксид кальция Ca(ОН)2, гидроксид калия KOH, гидроксид натрия NaOH и др.);

  • кислотные гидроксиды (кислородсодержащие кислоты) — гидроксиды, проявляющие кислотные свойства (например, азотная кислота HNO3, серная кислота H2SO4, сернистая кислота H2SO3 и др.)

  • амфотерные гидроксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (например, гидроксид алюминия Al(ОН)3, гидроксид цинка Zn(ОН)2).

Термин «гидроксиды» часто применяют только по отношению к основным и амфотерным гидроксидам.

Основные законы Химии

Закон Авога́дро — одно из важных основных положений химии, гласящее, что «в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул»Первое следствие из закона Авогадро: один моль любого газа при одинаковых условиях занимает одинаковый объём.В частности, при нормальных условиях, т. е. при 0 °C (273К) и 101,3 кПа, объём 1 моля газа, равен 22,4 л. Этот объём называют молярным объёмом газа Vm. Пересчитать эту величину на другие температуру и давление можно с помощью уравнения Менделеева-Клапейрона:.

Второе следствие из закона Авогадро: молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа по второму.

Закон кратных отношений — Если один и тот же элемент образует несколько соединений с другим элементом, то на одну и ту же массовую часть первого элемента будут приходиться такие массовые части второго, которые относятся друг к другу как небольшие целые числа.

Состав оксидов азота (в процентах по массе) выражается следующими числами:

Закись азота N2O

Окись азота NO

Азотистый ангидрид N2O3

Двуокись азота NO2

Азотный ангидрид N2O5

N

63.7

46.7

36.8

30.4

25.9

O

36.3

53.3

63.2

69.6

74.1

Частное O/N

0.57

1.14

1.71

2.28

2.85

Закон постоянства состава (Ж.Л. Пруст, 1801—1808гг.) — любое определенное химически чистое соединение независимо от способа его получения состоит из одних и тех же химических элементов, причем отношения их масс постоянны, а относительные числа их атомов выражаются целыми числами. Это один из основных законов химии.

Закон сохранения массы — закон физики, согласно которому массафизической системы сохраняется при всех природных и искусственных процессах.

Со́ли — это сложные вещества, которые в водных растворах диссоциируют на катионы металлов и анионы кислотных остатков. ИЮПАК определяет соли как химические соединения, состоящие из катионов и анионов. Есть ещё одно определение: солями называют вещества, которые могут быть получены при взаимодействии кислот и оснований с выделением воды.

Если рассматривать соли как продукты протонов в кислотах или гидроксогрупп в основаниях, то можно выделить следующие типы солей:

  1. Средние (нормальные) соли — продукты замещения всех катионов водорода в молекулах кислоты на катионы металла (Na2CO3, K3PO4).

  2. Кислые соли — продукты частичного замещения катионов водорода в кислотах на катионы металла (NaHCO3, K2HPO4). Они образуются при нейтрализации основания избытком кислоты (то есть в условиях недостатка основания или избытка кислоты).

  3. Осно́вные соли — продукты неполного замещения гидроксогрупп основания (OH-) кислотными остатками ((CuOH)2CO3). Они образуются в условиях избытка основания или недостатка кислоты.

Химические свойства

Химические свойства определяются свойствами катионов и анионов, входящих в их состав.

Соли взаимодействуют с кислотами и основаниями, если в результате реакции получается продукт, который выходит из сферы реакции (осадок, газ, малодиссоциирующие вещества, например, вода):

Соли взаимодействуют с металлами, если свободный металл находится левее металла в составе соли в электрохимическом ряду активности металлов:

Соли взаимодействуют между собой, если продукт реакции выходит из сферы реакции (образуется газ, осадок или вода); в том числе эти реакции могут проходить с изменением степеней окисления атомов реагентов:

Некоторые соли разлагаются при нагревании:

Диссоциация в водных растворах

При растворении в воде соли полностью или частично диссоциируют на ионы. Если диссоциация происходит нацело, то соли являются сильными электролитами, иначе — слабыми. Примером типичных сильных электролитов могут служить соли щелочных металлов, которые в растворе существуют в виде сольватированных ионов. Несмотря на то, что широко распространена теория, утверждающая, что соли в водном растворе диссоциируют полностью, в реальности для большинства солей наблюдается частичная диссоциация, например, 0,1 M раствор FeCl3 содержит лишь 10 % катионов Fe3+, а также 42 % катионов FeCl2+, 40 % катионов FeCl2+, 6 % катионов FeOH2+ и 2 % катионов Fe(OH)2+.

Методы получения

Существуют различные методы получения солей:

  • Взаимодействие кислот с металлами, основными и амфотерными оксидами / гидроксидами:

  • Взаимодействие кислотных оксидов c щелочами, основными и амфотерными оксидами / гидроксидами:

  • Взаимодействие солей c кислотами, другими солями (если образуется выходящий из сферы реакции продукт):

  • Взаимодействие простых веществ:

  • Взаимодействие оснований с неметаллами, например, с галогенами:

Кристаллогидраты обычно получают при кристаллизации соли из водных растворов, однако известны также кристаллосольваты солей, выпадающие из неводных растворителей (например, CaBr2·3 C2H5OH).

1 Химия есть наука о веществах, их свойствах и превращениях. Она является важнейшей областью современного естествознания.  Место химии в системе естественных паук определяется специфичной только для нее формой движения материи. Химическая форма движения материи определяется движением атомов внутри молекул, протекающим при качественном изменении молекул. Атомы, молекулы, макромолекулы, ионы, радикалы, а также и другие образования являются материальными носителями химической формы движения материи. Ассоциация и диссоциации молекул также следует отнести к химической форме движения молекул. Химическая форма движения качественно неисчерпаема, бесконечна в своих проявлениях.  В природе и в искусственных условиях приходится постоянно наблюдать взаимосвязь между всеми естественными науками (физика, химия, биология, геология математика и др.). Химия, физика, биология широко пользуются методами и понятиями выработанными физикой; расшировка сложных биологических образований возможна лишь при участии химии, математики и биологии.

Возникновение химии как науки, основные этапы ее развития.

Зарождение химии связано с развитием химических процессов и ремесел, таких как выплавка металла, пивоварение, дубление кож и крашение, которые давали практические сведения о поведении веществ. Долог, поучителен и интересен путь ее развития.  К основным этапам в истории химической пауки можно отнести:  1-й этап. С древних времен до конца XVIII века. Алхимический период, Работ. Р.Бойля.  2-й этап. Химия как наука. Работы Ломоносова, Дальтона, Лавуазье.  3-й этап. XIX и. Атомо-молекулярная теория, формирование фундаментальных теоретических основ химии. Открытие Менделеевым Д.И. периодическою закона 1809 году.  4-й этап. Современный период успешного возрождения химии. Научные и практические исследования в области химии.

Предмет химии, методы исследования химических явлений. Значение химии для формирования мировоззрения, изучения природы и развития техники.

Изучение природы составляет задачу естественных наук, к которым относится и химия. Химия — это наука об элементах и об¬разуемых ими соединениях, наука о строении, свойствах и химических превращениях этих соединений.  Образование и разрушение химических соединений, изме¬нение их состава и структуры связано химической формой движения материи. Химия занимается изучением химической формы движения материи, взаимосвязью и взаимопереходами между нею и другими формами движения мaтерии. Отсюда следует, что химия тесно связана с физикой, биологией, гео¬логией и другими науками. Это отражает одно из основных положений диалектического материализма о всеобщей связи и взаимодействии явлений в природе и обществе.  Химия играет огромную роль в жизни современного об¬щества. Химия вторгается во все области науки, техники, производства, сельского хозяйства, быта, внося революцион¬ные преобразования в привычные процессы и методы, эконо¬мя труд, средства, время и материалы, увеличивая народное богатство. Сейчас особенно подтверждаются слова великого русского ученого М. В. Ломоносова: „Широко распростирает химия руки свои в дела человеческие  Преподавание химии в высших учебных заведениях имеет своей задачей не только сообщить студенту определенный комплекс химических знаний и подготовить его к изучению целого ряда специальных дисциплин, но и способствовала развитию у студента диалектико-материалистического мировоззрения.  Химия является не только общеобразовательной, но и общетехнической наукой. Инженер, работающий в любой отрасли промышленности, должен владеть основами химической науки.

Химия в Казахстане. Задачи современной химии. Химия и охрана окружающей среды.

Химия служит теоретической основой получения минеральных удобрений, аммиака кислот, солей, полупроводниковых материалов, сплавов металлов и других многочисленных продуктов.  Химия играет огромную роль в расширении наиболее актуальных проблем современного общества. К их числу относят:  а) синтез новых веществ и композиций, необходимых для решения технических задач;  б) увеличение эффективности искусственных удобрений для повышения урожайности сельскохозяйственных культур;  в) синтез продуктов питания из несельскохозяйственного сырья (искусственная пища);  г) разработка и создание новых источников энергии;  д) охрана окружающей среды; .  е) выяснение механизма важнейших биохимических процессов;  ж) освоение огромных океанических источников сырья.  Изучая свойства веществ, химия не ограничивается изучением только их внешних качественных или количественных характеристик (температуры плавления и кипения, плотность и т.д.). Главная задача химии - выявление и описание химических свойств веществ, благодаря которым становится возможным превращение одних веществ в другие в результате химических реакций.  Знание природы веществ позволяет понять превращения этих веществ с позиции основных законов, которым подчиняются эти превращения. Наконец, познакомившись с основными понятиями и законами химии, можно объяснить и даже пытаться прогнозировать принципы и условия работы современных химических производств.  Глубокое знание химии совершенно необходимо специалистам всех отраслей народного хозяйства. Наряду с физикой и математикой она составляет основу профессиональной подготовки специалистов высокой квалификации.

Квантово-механическая модель атома

Современная модель атома является развитием планетарной модели. Согласно этой модели, ядро атома состоит из положительно заряженных протонов и не имеющих заряда нейтронов и окружено отрицательно заряженными электронами. Однако представления квантовой механики не позволяют считать, что электроны движутся вокруг ядра по сколько-нибудь определённым траекториям (неопределённость координаты электрона в атоме может быть сравнима с размерами самого атома).

Двойственная природа электрона

Подтвержденная экспериментально в 1927 г. двойственная природа электрона, обладающего свойствами не только частицы, но и волны, побудила ученых к созданию новой теории строения атома, учитывающей оба этих свойства. Современная теория строения атома опирается на квантовую механику.

Двойственность свойств электрона проявляется в том, что он, с одной стороны, обладает свойствами частицы (имеет определенную массу покоя), а с другой - его движение напоминает волну и может быть описано определенной амплитудой, длиной волны, частотой колебаний и др. Поэтому нельзя говорить о какой-либо определенной траектории движения электрона - можно лишь судить о той или иной степени вероятности его нахождения в данной точке пространства.

Следовательно, под электронной орбитой следует понимать не определенную линию перемещения электрона, а некоторую часть пространства вокруг ядра, в пределах которого вероятность пребывания электрона наибольшая. Иными словами электронная орбита не характеризует последовательность перемещения электрона от точки к точке, а определяется вероятностью нахождения электрона на определенном расстоянии от ядра.

Квантовые числа — энергетические параметры, определяющие состояние электрона и тип атомной орбитали, на которой он находится.

Главное квaнтовое число n определяет общую энергию электрона и степень его удаления от ядра (номер энергетического уровня); оно принимает любые целочисленные значения, начиная с 1 (n = 1, 2, 3, . . .)

Орбитальное (побочное или азимутальное) квантовое число l определяет форму атомной орбитали. Оно может принимать целочисленные значения от 0 до n-1 (l = 0, 1, 2, 3,..., n-1). Каждому значению l соответствует орбиталь особой формы. Орбитали с l = 0 называются s-орбиталями,

l = 1 – р-орбиталями (3 типа, отличающихся магнитным квантовым числом m),

l = 2 – d-орбиталями (5 типов),

l = 3 – f-орбиталями (7 типов).

Магнитное квантовое число m определяет ориентацию орбитали в пространстве относительно внешнего магнитного или электрического поля. Его значения изменяются от +l до -l, включая 0. Например, при l = 1 число m принимает 3 значения: +1, 0, -1, поэтому существуют 3 типа р-АО: рx, рy, рz.

Спиновое квантовое число s может принимать лишь два возможных значения +1/2 и -1/2. Они соответствуют двум возможным и противоположным друг другу направлениям собственного магнитного момента электрона, называемого спином (от англ. веретено). Для обозначения электронов с различными спинами используются символы: и .

Атомная орбиталь — одноэлектронная волновая функция в сферически симметричном электрическом поле атомного ядра, задающаяся главным n, орбитальным l и магнитным m квантовыми числами.

Название «орбиталь» (а не орбита) отражает геометрическое представление о стационарных состояниях электрона в атоме; такое особое название отражает тот факт, что состояния электрона в атоме описывается законами квантовой механики и отличается от классического движения по траектории. Совокупность атомных орбиталей с одинаковым значением главного квантового числа n составляют одну электронную оболочку.

Принцип Паули

Принцип Паули, который часто называют еще принципом запрета, ограничивает число электронов, которые могут находиться на одной орбитали. Согласно принципу Паули, на любой орбитали может находиться не более двух электронов и то лишь в том случае, если они имеют противоположные спины (неодинаковые спиновые числа). Поэтому в атоме не должно быть двух электронов с одинаковыми четырьмя квантовыми числами (n, l, ml, ms).

Атом лития имеет три электрона. Орбиталь с самой низкой энергией - 1s-орбиталь - может быть заселена лишь двумя электронами, причем у этих электронов должны быть разные спины. Если обозначать спин +1/2 стрелкой, направленной вверх, а спин −1/2 - стрелкой, направленной вниз, то два электрона с противоположными (антипараллельными) спинами на одной орбитали можно схематически представить так:

Третий электрон в атоме лития должен занимать орбиталь, следующую по энергии за самой низкой орбиталью, то есть 2s-орбиталь.

Правило Гунда

Правило Гунда (Хунда) определяет порядок заселения электронами орбиталей, имеющих одинаковую энергию. Оно было выведено немецким физиком-теоретиком Ф. Гундом (Хундом) в 1927 г. на основе анализа атомных спектров.

Согласно правилу Гунда, заселение орбиталей, относящихся к одному и тому же энергетическому подуровню, начинается одиночными электронами с параллельными (одинаковыми по знаку) спинами, и лишь после того, как одиночные электроны займут все орбитали, может происходить окончательное заселение орбиталей парами электронов с противоположными спинами. В результате суммарный спин (и сумма спиновых квантовых чисел) всех электронов в атоме будет максимальным.

Например, атом азота имеет три электрона, находящиеся на 2р-подуровне. Согласно правилу Гунда, они должны располагаться поодиночке на каждой из трех 2р-орбиталей. При этом все три электрона должны иметь параллельные спины:

1 закон термодинамики представляет собой одну из формулировок закона сохранения энергии применительно к термодинамическим процессам. Закон сохранения энергии утверждает, что энергия не создается и не уничтожается, а только лишь превращается из одной формы в другую. 1 закон термодинамики можно сформулировать так: "Невозможно создать вечный двигатель первого рода, т.е. машину, которая совершала бы работу, не затрачивая энергию". Вторая формулировка повторяет математическую формулу: "Изменение внутренней энергии системы (ΔU) равно сумме между количеством теплоты (Q) и количеством работы (А)"

ΔU = Q + A, [Дж].

Если работа имеет положительное значение, система приобретает энергию. Это означает, что работа выполняется над системой. Если работа выполняется самой системой, то система теряет энергию, и работа имеет отрицательное значение: 

ΔU = Q - A, [Дж].

Рассмотрим некоторые закономерности, вытекающие из 1 закона или так называемые частные случаи 1 закона.

1) Изохорный процесс (V=const). А=0, т.к. не происходит изменения объема.  ΔU=Qv.  Qv =n·cv ·(T2 -T1). 

2) Изотермический процесс (Т=const).  Внутренняя энергия системы не меняется. Вся сообщаемая теплота расходуется на совершение работы А по расширению системы. ΔU=0.  Qт =А.  А=nRT·2,3lg (если изменяется объем).  А = nRT · 2,3 lg  (если изменяется давление).

3) Адиабатный процесс (Q=0). Теплообмен с окружающей средой отсутствует. Система может совершать работу только за счет убыли внутренней энергии. А=-ΔU. A = n c (T1 - T2).

4) Изобарный процесс (р=const). ΔU=Qp -A  Qp =ΔU+A=ΔH. ΔH - функция состояния системы, называемая энтальпией.  Таким образом, для изобарного процесса теплота его равна изменению энтальпии системы.  А=pΔv.  Qp =n cp (T2 -T1

Итак, теплота, поглощаемая системой при постоянном давлении, равна изменению энтальпии системы ΔH = Qp.

Изменение энтальпии можно представить в виде

ΔH = Н2 - Н1, где Н1 - энтальпия реагентов, Н2 - энтальпия продуктов. Эту величину еще называют теплотой реакции. В зависимости от значения ΔH реакция может быть эндотермической и экзотермической.

Заполнения атомных орбиталей

Заселение электронами атомных орбиталей (АО) осуществляется согласно принципу наименьшей энергии, принципу Паули и правилу Гунда.

Принцип наименьшей энергии требует, чтобы электроны заселяли АО в порядке увеличения энергии элекронов на этих орбиталях. Это отражает общее правило – максимуму устойчивости системы соответствует минимум ее энергии.

Принцип Паули запрещает в многоэлектронном атоме находиться электронам с одинаковым набором квантовых чисел. Это означает, что два любых электрона в атоме (или молекуле, или ионе) должны отличаться друг от друга значением хотя бы одного квантового числа, то есть на одной орбитали может быть не более двух электронов с различными спинами (спаренных электронов). Каждый подуровень содержит 2l + 1 орбитали, на которых размещаются не более 2(2l + 1) электронов. Отсюда следует, что емкость s-орбиталей – 2, p-орбиталей – 6, d-орбиталей – 10 и f-орбиталей – 14 электронов. Если число электронов при заданном l просуммировать от 0 до n – 1, то получим формулу Бора–Бьюри, определяющую общее число электронов на уровне с заданным n:

Эта формула не учитывает межэлектронное взаимодействие и перестает выполняться при n ≥ 3.

Орбитали с одинаковыми энергиями (вырожденные) заполняются в соответствии с правилом Гунда: наименьшей энергией обладает электронная конфигурация с максимальным спином. Это означает, что если на p-орбитали три электрона, то они располагаются так: , и суммарный спин S = 3/2, а не так: , S = 1/2.

Правило Клечковского (также Правило n+l; также используется название правило Маделунга) — эмпирическое правило, описывающее энергетическое распределение орбиталей в многоэлектронных атомах.

Заполнение электронами орбиталей в атоме происходит в порядке возрастания суммы главного и орбитального квантовых чисел . При одинаковой сумме раньше заполняется орбиталь с меньшим значением .

Многоэлектронные атомы

Точно так же, как и в атоме водорода, в более сложных атомах электроны могут двигаться вокруг ядра только по определенным избранным орбитам. Различные экспериментальные данные указывают, что возможные орбиты электронов в атоме группируются в систему оболочек. Грубо схематически можно представить себе эти оболочки в виде концентрических сфер, окружающих ядро (рис. 368). Каждая из оболочек содержит определенное число орбит, на каждой из которых может находиться только один электрон. Оболочка наименьшего радиуса, называемая K-оболочкой, содержит две орбиты. На второй оболочке — L-оболочке — имеется восемь орбит. Столько же орбит на следующей оболочке — третьей. Далее идет четвертая оболочка с 18 орбитами и т. Д

О принципиальной возможности протекания химических реакций судят по величине изменения свободной энергии системы . Однако этого недостаточно, чтобы предсказать реальную возможность химического процесса, определить скорость реакции, ее механизм, а также управлять процессом.

Например, термодинамическая вероятность окисления водорода до газообразной воды

Н2(Г) + 1/2О2(Г) = Н2О(Г),                = –228,3 кДж/моль

значительно выше, чем вероятность реакции окисления оксида азота (II)    

NO(Г) + 1/2О2(Г) = NO2(Г),              = –35,1 кДж/моль.

В то же время первая реакция при комнатной температуре практически не протекает, и смесь водорода с воздухом может храниться в этих условиях длительное время, вторая же реакция при тех же условиях протекает мгновенно. Таким образом, для полного описания химического процесса необходимо знать закономерность протекания его во времени. Скорость и механизм химических реакций изучает химическая кинетика.