Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
38
Добавлен:
15.04.2015
Размер:
248.83 Кб
Скачать

Radiation balance (budget) of the Earth surface and the atmosphere

B

Definition

R I B

I

Difference between absorbed and emitted by a body radiation is called balance of radiative energy (radiation balance – R) of the body.

We know sufficiently well about the R of the Earth surface and R of the Earth as a whole planet. However, we know a little about the radiation balance of separate layers of the atmosphere.

1

Radiation balance of the Earth surface

Income part

Outlay part

Absorbed fraction of the

The Earth surface

direct SR

1 r I '

radiation B0

Absorbed fraction of the scattered SR 1 r i

A fraction of atmospheric radiation BA

R 1 r I ' 1 r i BA B0

B *

R 1 r I' i B *

2

Radiation balance of the surface influences:

Temperature regime in the soil and the surface layer of the atmosphere.

Processes of fog and frost formation.

Air mass transformation.

Radiation balance varies depending on latitude, time of the year and day, and weather conditions.

Radiation balance can be calculated for various time intervals: minutes, hours, days, weeks etc.

It can be positive ( income exceeds outlay) and negative (the body emits more energy than absorbs)

Radiation balance is subject for annual and diurnal variations.

3

Annual and diurnal variations of the radiation balance of the Earth surface.

R

 

 

For a location at

 

 

 

60°N latitude

 

 

 

June

6

noon

18

t

 

 

 

 

April

 

 

 

October

An important feature of the radiation balance is its transfer via 0. Usually, it happens at the time when Sun altitude reaches 10 -15°. In case of snow cover existence it occurs at the Sun altitude 20 - 25°. This means that the time interval with positive radiation balance becomes much shorter.

4

Some particularities of the radiation balance annual variation

Annual variation of the radiation balance depends on latitude and type of underlying surface.

Tropical area: radiation balance is always positive.

Antarctic area: radiation balance is always negative due to large value of the surface albedo.

At 60° latitude: radiation balance is positive 6 – 8 months a year.

In arctic area there are some places where radiation balance (average for a year) is positive. It is valid for the places with snow and ice free surfaces for at least 2 months. The Sun shines here 24 hours at summer months.

Question: Where radiation balance is larger on ocean or on land at the same altitude and weather conditions?

Answer: On ocean, since water surface albedo is less than that of land

5

Radiation balance depends on Sun altitude, albedo and cloudiness.

R...a ho b

Parameters “a” and “b” depends on albedo of

 

 

the underlying surface.

 

 

r%

10 - 20

20 - 30

50 - 60

60 - 70

80 - 90

a W/m²

9,1

8,4

6,3

4,9

2,8

b°

10,0

9,8

7,4

7,4

8,5

Cloudiness impact

When R>0, cloudiness causes the net and effective radiation decrease. But the net radiation decrease is much stronger. Therefore, the radiation balance decreases at cloudiness condition.

When R<0, cloudiness causes the effective radiation decease and, hence, decrease of radiation balance absolute value.

Conclusion: cloudiness always decreases the radiation balance

6

absolute value

 

Radiation balance of the atmosphere

Income part

Outlay part

The Earth surface radiation

Radiation directed toward the

absorbed by the atmosphere Ua

Earth surface BA

Direct and scattered SR absorbed

Radiation into space B

by the atmosphere Qa

 

 

 

RA Ua Qa BA B

 

 

 

 

B

 

 

 

 

 

 

 

 

Ua 1

P B0

 

Surface

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

radiation

 

 

 

 

 

 

 

 

 

Qa

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ua B0

PB0

 

Transmission

 

 

 

Ua

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part of the surface radiation that goes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

into the space

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B* B0 BA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BA

 

BA B0 B *

 

 

 

 

 

 

 

 

 

 

 

 

RA Ua Qa BA B

 

Ua B0 PB0

 

 

 

 

BA B0 B *

 

 

 

RA B0 PB0 B Qa B0 B *

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

 

Calculations done with this formula

 

 

 

 

 

 

RA B * Qa U

 

 

 

 

 

have shown that the RA values are

 

 

 

 

 

 

 

 

 

 

 

 

 

 

negative over whole globe.

 

φ°

0 - 10

 

20 - 30

40 - 50

60 - 70

 

RA W/m²

-101

 

-109

-80

 

-93

8

Radiation balance of the Earth as a whole planet

We’ll discuss the balance of radiative energy in a vertical column including active layer of soil ( water) and the atmosphere.

Incoming part RE I0! 1 rE U Outgoing part

Every unit of time the Earth receives the amount of SR equal to the

product of the solar constant

I0* by the area of the Earth cross

section

R2

i. e. R2 I0*

 

Due to Earth rotation this energy is distributed over the all surface of the globe that is 4 R2

R

2

*

*

 

 

Near equator RE>0 over the whole

 

I0

 

I0

0,343 kW

m2

year. In the middle latitudes RE>0

 

 

 

4 R2

4

 

is observed only in summer.

9

Cloudiness impact on RE value

 

 

 

 

 

 

 

 

R

E

I!

1 r U

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

E

 

 

 

 

Cloudiness increases albedo rE .

U

rE

 

 

 

 

 

 

 

 

 

 

 

RE

 

 

 

 

 

 

 

 

 

U

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cloudiness diminishes Uvalue

 

 

 

 

 

 

 

 

 

 

 

 

 

U∞

 

 

 

 

 

 

 

 

 

 

 

 

 

RE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At nights, when I0! 0 , RE U

 

 

 

 

At clear sky RE 0

 

 

 

 

 

 

 

 

 

At cloudy weather

RE 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RE

 

Clear

 

 

 

RE

 

Cloudy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10