Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
38
Добавлен:
15.04.2015
Размер:
368.64 Кб
Скачать

Terrestrial and atmospheric radiation

Earth’s surface radiation

As well as any other body with temperature T>0K, the Earth radiates energy. Since the Earth’s temperature is rather low

(T=288K), it radiates energy in

part of the spectrum.

Neither Earth, nor its atmosphere, is not absolutely black

0,85...0,99

body. Therefore

B0

T04

 

 

0,95

 

B0 BSun

however

B0 and

I!

are of the same order

 

 

 

 

 

of magnitude.

 

 

 

T°C

-40

-20

0

20

40

 

 

 

B kW/m²

0,17

0,24

0,32

0,43

0,55

 

 

 

1

Radiation of the atmosphere

It is of more complex character. As it follows from Kirchhoff’s law, the energy is emitted by only those gases which absorb it.

H2O, CO2, O3 are the main absorbers. There are secondary absorbers (in IR area only): NO; N2O; N2O4; N2O5; C2H4; CH4.

Usually we neglect their activity in radiation process.

Water vapor

“WINDOW” of water vapor is 8,5…12 μ. For this wavelength interval the water vapor is most transparent (see table in the lecture note 5). This interval is often called window of minimal extinction.

The strongest water vapor absorption band fall on the spectrum interval 5,5..7,0 μ.

2

Carbon dioxide

Volume index of absorption by CO2 is presented below

,

2,6 – 2,8

4,1 – 4,4

9,1 – 10,9

 

, m 1 0,025

0,33

 

 

2 10 5

 

12,9 – 17,1

0,83

 

 

This is the most

Carbon dioxide absorbs

 

important

IR radiation very lightly

 

absorption band

in the atmospheric

 

of the carbon

window

 

dioxide

 

 

 

3

Ozone

Ozone has several absorption bands in the IR part of the spectrum. However, the only bands represents practical interest; that is around 9,65 μ band. It is situated just in the “window. All other absorption bands of ozone are override by absorption of water vapor and carbon dioxide.

Transmission function for IR radiation total flux

The function below accounts for water vapor and carbon dioxide only.

P Qw.v. ,Qc.d. P1 Qw.v. P2 Qw.v. P3 Qc.d.

Mass of water vapor Qw.v.

Mass of carbon dioxide Qc.d.

1 m²

1 m²

 

4

 

3

 

 

 

3

 

P Qw.v. i exp i Qw.v.

 

P Qc.d. i exp i Qc.d.

 

i 1

 

 

 

i 1

 

Functions

P1 Qw.v. 10

P1 Qw.v. 10 100

P

P

1

 

 

 

 

2

3

0,19

 

0,19

0,05

0,32

2

0,21

 

0,26

0,19

0,40

3

0,35

 

0,29

--

0,28

1

47,0

 

43,0

0,29

0,056

 

 

 

 

 

 

2

1,1

 

1,0

0,023

0,0012

 

 

 

 

 

 

3

0,03

 

0,015

--

0

 

 

 

 

 

 

Cloud free atmosphere allows for passage of 17…35% of IR terrestrial

 

radiation. Cloudiness makes on appreciable contribution into absorption

 

of IR radiation. Mass absorption index of water droplets is 500 – 2000

 

cm²/g. That is much larger than for water vapor.

5

The IR radiation transmission function P for cloudiness depends on the mass of water droplets containing in the vertical air column of a unit section (cloud water storage).

Qδ kg/m²

0,01

0,03

0,07

P

0,144

0,013

0,0004

Cloudiness practically absorbs all infrared radiation at Qδ >0,03. Real clouds always contain Qδ >0,03.

Due to strong absorption of the IR radiation by water vapor, carbon dioxide, and , particularly, by clouds, the significant part of the terrestrial radiation is absorbed by the atmosphere, while an appreciable part of the SR is allowed to pass through the atmosphere. Thus, the atmosphere provides for a strong warming effect of the Earth surface.

6

Equation of the terrestrial radiation transfer in the atmosphere

The basis for the reasoning is the energy brightness. Assuming isotropic field of radiation, relation between

flux of radiation (I) and energy brightness (J) will be

Z

I J

I J

 

 

 

 

 

 

 

 

 

A′

θ

 

 

 

 

 

Energy brightness coming

 

 

 

from the upper hemisphere

J

 

 

 

 

A

 

 

 

 

Energy brightness coming

J

 

 

from the lower hemisphere

 

 

Z+dz

Z

At the point A

J

 

The change of the

 

 

 

 

At the point A’

J

dJ

brightness is dJ

 

 

 

7

 

 

 

Reasons for the change

Absorption

J adl

dl AA'

a is density of

 

 

 

 

 

absorbing gases

 

 

 

 

 

 

 

 

 

 

E is the brightness of

Radiation of the layer dz

E adl

 

 

BB radiation

Diffusion of the radiant energy

On one hand it is

On the other hand it

extinction of the

results in increasing

radiation

of the brightness

The sum effect of the diffusion is very small and can be neglected.

8

 

 

dJ

J

E adl

dl

 

dz

 

dJ

J E a

dz

 

 

cos

 

 

 

 

 

 

 

dz

 

 

 

 

cos

 

Dividing by

 

 

cos

 

 

 

 

 

 

 

 

 

 

 

dJ

 

 

 

 

 

 

equations of heat (IR

 

 

 

 

 

dz

cos E J a

 

 

 

 

 

 

 

 

 

These are differential

 

 

From the similar

 

 

 

radiation) transfer.

 

 

 

 

 

To obtain equations for

 

 

reasoning

 

 

 

 

 

 

 

 

upward (Uλ) and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dJ

cos J

E a

 

downward (Gλ)

 

 

 

 

homogeneous fluxes,

 

 

these equations must be

dz

 

 

 

 

 

 

 

integrated with respect

 

 

 

 

 

 

 

to θ from 0 to π/2 and with respect to azimuth from 0 to 2π

9

 

 

 

 

 

 

 

As result we get

 

U

a B

U

 

 

G

a G B

 

z

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

B

 

C 5

 

and

1,66

 

 

 

1

 

Here

 

 

 

 

 

 

 

 

 

 

C2

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

exp

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

Fluxes Uλ and Gλ satisfy to the following boundary conditions:

G 0

at

Z

U

 

B 1 r G

at

Z 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For practical purposes

 

T

 

1 Ф

 

 

 

 

 

 

 

 

 

 

 

U U d

 

 

G G d

 

 

 

z

 

 

 

 

t

cp

 

 

 

 

 

 

 

 

 

 

 

 

 

Some practical interest is related to vertical gradients of the quantities U, G, and Ф (effective flux ).

10

 

Levels

P=P0

200 hPa

100 hPa

 

G

kW

m

2

0,327

0,084

0,06

 

 

kW

 

 

 

 

 

Ф

m

2

0,016

0,103

0,119

 

 

 

 

 

 

 

 

U

kW

m2

0,343

0,187

0,185

 

 

 

 

 

 

 

hPa

 

 

 

 

 

 

 

 

G

 

Ф

 

U

 

 

10

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

P=P0

 

 

 

 

 

 

 

 

 

 

0, 1

 

0, 2

0, 3

11