Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Заоч2012 ТСИ и Информат / ТСИ / лабораторные / ЛР№2 сисблок и матплата

.doc
Скачиваний:
50
Добавлен:
17.04.2015
Размер:
690.18 Кб
Скачать

ЛАБОРАТОРНАЯ РАБОТА №2

Системный блок и системная плата

Конструктивно ПК чаще всего выполнены в виде центрального (системного) блока, к которому через разъемы (стыки) подключаются внешние устройства: клавиатура, дисплей, принтер и т. д. (рис. 1).

Рис.1. Общая организация узлов и устройств составляющих персональный компьютер

Системный блок обычно состоит из: системной платы, блока питания, накопителей на дисках, разъемов для дополнительных устройств; плат расширения с контроллерами — адаптерами внешних устройств.

В зависимости от конфигурации и размеров корпуса определяются такие характеристики ПК, как возможность дальнейшего расширения, транспортировка, доступ к компонентам и т. д. Типы корпусов: Slimline, Desktop, Tower (Mini-Tower, Midi-Tower, Super-Big-Tower), File Server, EasyPc и пр.

Системная плата. Системную плату также называют главной (Mainboard) или материнской (Motherboard) платой (иногда — объединительной платой). Это — основная монтажная схема внутри ПК, на которой находятся процессор, память, слоты расширения и которая непосредственно или косвенно присоединяется к каждой части ПК. Проекты ПК сегодня используют много различных шин, чтобы связать их компоненты. Широкие, высокоскоростные шины трудны и дороги для производства: сигналы идут с такой частотой, что даже расстояние в несколько сантиметров создает проблемы задержки сигнала, в то время как металлические дорожки на монтажной схеме действуют как миниатюрные радиоантенны, передавая электромагнитный шум, который искажает сигналы в других местах системы. По этим причинам разработчики ПК стараются разместить самые быстрые шины в ограниченной области системной платы и использовать более медленные шины для других частей.

Развитие системных плат. Первоначальные ПК имели минимум устройств, интегрированных в системную плату (например, порт для клавиатуры). Все остальные, включая адаптер дисплея, НГМД или контроллеры жесткого диска, являлись дополнительными компонентами, подключаемыми через разъемы расширения.

Через какое-то время в системную плату было интегрировано большее количество устройств, однако многие из них — графика, сетевой интерфейс, устройства SCSI и звуковые — обычно остаются съемными. Этот процесс шел медленно, например, порты ввода-вывода и контроллеры диска еще в 1995 г. часто размещались на платах расширения. Изготовители постоянно экспериментировали с различными уровнями интеграции, встраивая некоторые или даже все эти компоненты в системную плату. Однако есть очевидные препятствия — труднее модернизировать сборку, если интегрированные компоненты не могут быть удалены. Для высокоинтегрированных системных плат часто требуется нестандартный корпус, и для замены отдельного дефектного компонента может оказаться необходимой покупка новой системной платы.

Следовательно, те части системы, спецификация которых изменяется наиболее быстро, — оперативная память, центральный процессор и графика — имеют тенденцию размещаться в гнездах или слотах для облегчения замены. Точно так же обычно удаляются из основной спецификации, чтобы уменьшить затраты, компоненты, используемые не всеми пользователями, - типа сетевых интерфейсов или SCSI.

Основные изменения в форм-факторах системной платы за эти годы рассматриваются ниже. Рисунки иллюстрируют различие компонентов для двух типичных плат:

  • Baby AT, где используется разъем Socket 7 для подключения процессора, приблизительно 1995 г. (рис.2);

  • проект АТХ с разъемом Slot 1 для присоединения процессора Pentium II, типичный для системных плат на рынке в конце 1998 г. (рис. 3)

Рис.2. Плата baby AT, общий вид

Рис 3 Плата ATX

Развитие системной платы заключается в значительной степени в отделении высокоскоростных компонентов от более медленных. Поскольку высокоскоростные устройства связывались более быстрыми шинами, шины малого быстродействия стали играть второстепенную роль. В конце 1990-х гг. обозначилась тенденция к помещению периферийных устройств, разработанных как интегрированные чипы, непосредственно на системную плату. Первоначально этот круг ограничивался звуковыми и видеочипами, но со временем устройства, интегрированные таким образом, стали более разнообразными и включали элементы типа SCSI, локальной сети и даже контроллеры RAID. Очевидно, есть выигрыш по стоимости при этом подходе, однако отрицательная сторона этого — ограничение будущих возможностей обновления.

Базовая Система Ввода-Вывода (ВIOS). Все системные платы содержат небольшой блок постоянного запоминающего устройства (ROM), который отделен от основной системной памяти, используемой для загрузки и выполнения программного обеспечения (рис. 4). ROM содержит BIOS ПК (Базовая Система Ввода-Вывода). Это дает два преимущества: программы и данные в ROM BIOS не должны перезагружаться каждый раз при запуске компьютера, и они не могут быть разрушены ошибками в приложениях, которые пытаются записать информацию в «неправильную» часть памяти.

Рис.4 BIOS на системной плате

BIOS играет двоякую роль: с одной стороны, это неотъемлемый элемент аппаратуры, а с другой стороны — важный модуль любой операционной системы. Модуль BIOS реализован на микросхеме постоянной или флэш-памяти.

Перепрограммируемая базовая система ввода-вывода может быть модифицирована через гибкую дискету, чтобы гарантировать будущую совместимость с новыми чипами, добавочными платами и т. д.

В современных системах требуются более объемные ППЗУ. Настройка (конфигурирование) системной платы состоит из подстройки ПК под используемый графический режим, установки рабочей тактовой частоты, указания объема имеющейся в наличии кэш-памяти, типа встроенного сопроцессора и т. д. Существует семь возможных вариантов настройки, типичными из которых являются:

  • Standard-CMOS-Setup (основные установки CMOS);

  • Advanced-CMOS-Setup (дополнительные установки CMOS);

  • Advanced-Chipset-Setup (дополнительные установки системной платы).

Базовая система ввода-вывода включает несколько отдельных подпрограмм, обслуживая различные функции. Первая часть выполняется при включении машины. Компьютер инспектируется, чтобы определить, какие аппаратные средства присоединены, и затем проводятся некоторые простые тесты, чтобы зафиксировать, что все функционирует, — процесс, называемый POST — самопроверка после включения.

Если какие-то из периферийных устройств относятся к типу «Plug-and-play», то именно в этот момент базовая система ввода-вывода назначает им ресурсы. Есть также возможность вызвать программу Setup, что позволяет пользователю сообщать ПК, какие аппаратные средства присоединены, но благодаря автоматическим базовым системам самоконфигурирования ввода-вывода это не так часто теперь используется.

Когда все тесты пройдены, ROM пытается определять, с какого устройства будет загружаться ОС машины. Обычно BIOS сначала проверяет присутствие операционной системы в накопителе на гибких магнитных дисках (А:), затем — на первичном жестком диске.

Оперативная память CMOS. Системные платы также включают отдельный блок оперативной памяти, основанный на схеме малой мощности CMOS RAM (Complementary Metal-Oxide Semiconductor RAM), который сохраняется действующим с помощью батарей даже после отключения питания ПК и располагается в контроллере периферии. Он используется, чтобы сохранять основную информацию о конфигурации ПК: номера и тип жестких дисков и НГМД, объем памяти, какой вид и т. д. Это можно вводить вручную, но современные BIOS автоконфигурирования делают многое из этой работы, и в CMOS сохраняются более важные параметры настройки типа выбора периода регенерации динамической оперативной памяти. Другие важные данные, сохраняемые в памяти CMOS, — время и дата, которые модифицируются часами реального времени (RTC — real time clock). Часы, оперативная память CMOS и батарея обычно интегрируются в единственный чип. При загрузке система считывает время с RTC, после этого процессор сохраняет время — вот почему системные часы иногда идут неверно. Перезагрузка ПК заставляет перечитать RTC, что корректирует системное время ЦП.

Рис.5. CMOS

В CMOS RAM информация хранится до тех пор, пока он подключен к небольшому источнику питания. Однако CMOS RAM занимает много места на кристалле, дороже динамической памяти и поэтому используется в случаях крайней необходимости. Данный тип памяти считается энергонезависимым только потому, что постоянно подписывается или от аккумулятора, или от батарейки.

EFI. Базовая Система Ввода-Вывода не очень изменилась за время, прошедшее от рождения ПК в 1981 г., оставаясь массивом ассемблерного кода «ручной работы», и большинство пользователей о ней знают только из сообщений, быстро пробегающих по экрану после включения ПК.

В начале 2000 г. компания Intel объявила, что собирается заменить BIOS выпуском первой версии EFI (extensible firmware interface или расширяемого интерфейса встроенного программного обеспечения). Это новый стандарт для архитектуры, интерфейса и услуг марки встроенного программного обеспечения ПК, предназначенного для обеспечения хорошо специфицированного набора сервисов.

Сервисы EFI разделены на две группы: те, которые являются доступными только до загрузки ОС, или «загрузочные сервисы», и те, которые также доступны в дальнейшем, или «сервисы рабочего времени». Загрузочные сервисы обеспечивают функциональные возможности предлагаемых EFI для конфигурирования платформы, инициализации, диагностики, загрузки образа ядра ОС и др.

Сервисы EFI определены в Спецификации EFI как основные услуги и протоколы интерфейсов. Ряд протоколов интерфейсов был определен для доступа к разнообразию загрузочных устройств, которые удовлетворяют рекомендациям EFI. Другие обеспечивают сервисы для функций прикладного уровня, например распределение памяти или получение доступа к указанному интерфейсу.

Модули EFI в общем разделяются на приложения и драйверы. Драйверы соответствуют модели, определенной в EFI-спецификации, и используются, чтобы реализовать специфический протокол интерфейса. Во многих случаях выполнение одного протокола может использовать или расширять функциональные возможности существующего протокола, таким образом обеспечивая механизм для объектно-ориентированной обработки.

В сущности, EFI — «мини-ОС» с собственными правами, способная работать с сетями, графикой, клавиатурой и памятью.

Некоторые образцы системных плат. Размеры системной платы нормированы. Также стандартизованы и отверстия внутри платы, которые соединяют ее с дном корпуса. Поэтому говорят не о размерах, а о типоразмерах системных плат.

Существует несколько основных типоразмеров системных плат, которые представлены в табл. 1.1.

FullSize. Полноразмерная плата (FullSize) по своим габаритам соответствует системной плате IBM PC AT. Расположение разъемов клавиатуры и слотов расширения такой платы строго определены, чтобы совпадать с отверстиями в корпусе. Плата помешается только в полноразмерный корпус типа Desktop и Tower.

Baby АТ. Стандарт системных плат типоразмера Baby AT (ВАТ) появился в 1982 г. На этих платах расположение разъемов клавиатуры и слотов также должно соответствовать отверстиям в корпусе. Для подключения клавиатуры используется стандартный 5-контактный DIN-разъем. Системные платы размера Baby AT могут быть установлены практически в любой корпус, за исключением корпусов с уменьшенной высотой и Slimline. Именно поэтому они получили наибольшее распространение.

LPX (mini-IPX). Системные платы LPX и mini-LPX обычно устанавливаются в корпусах с уменьшенной высотой или Slimline. Слоты расширения этих плат смонтированы на отдельной выносной плате (Reisercard), которая устанавливается в слот системной платы перпендикулярно ей. Карты расширения устанавливаются в выносную плату таким образом, что их плоскость становится параллельной системной плате — это позволяет уменьшить высоту корпуса PC. Все разъемы установлены на задней панели системной платы LPX. Обычно это разъемы для подключения монитора, параллельный порт, два последовательных порта и разъемы типа mini-DINдля клавиатуры и мыши стандарта PS/2. Все разъемы смонтированы непосредственно на системной плате.

АТХ. В 1995 г. корпорация Intel анонсировала новую спецификацию АТХ для форм-фактора системной платы и корпуса PC. Плата спецификации АТХ сочетает в себе наилучшие черты стандартов Baby-AT и LPX, кроме того, в ней заложены многие дополнительные усовершенствования.

В дальнейшем Intel полностью перешла на производство сис­темных плат спецификации АТХ. Ряд других поставщиков системных плат, например ASUS Тек, также наладили выпуск системных плат АТХ.

Mini-АТХ - просто меньшая версия полноразмерной АТХ-платы. На обеих параллельный и последовательный порты, PS/2 клавиатура и порты мыши расположены на задней панели ввода-вывода двойной высоты. Размещение непосредственно на плате отменяет потребность в кабеле к портам ввода-вывода. Последствие этого, однако, — то, что АТХ нуждается в специально спроектированном корпусе, с правильно расположенными отверстиями для портов, и ни платы АТХ, ни Mini-ATX не могут использоваться в корпусах AT.

NLX. В начале 1997 г. корпорацией Intel был предложен стандарт NLX, регламентирующий:

  • новые физические и функциональные параметры блока питания;

  • требования к режимам охлаждения и условиям соединения отдельных компонентов ПК между собой;

  • систему крепления системной платы;

  • разбиение платы на зоны, в пределах которых располагаются электронные компоненты, имеющие определенную высоту и служащие для реализации тех или иных функций.

Стандарт NLX явился дальнейшим развитием стандарта АТХ. Согласно стандарту NLX в ПК устанавливается так называемая ризер-карта (riser card), напоминающая плату адаптера, вставляемую в системную плату в корпусе типа Slimline. Как и плата адаптера Slimline, ризер-карта имеет стандартные слоты PCI и ISA, в которые устанавливаются все необходимые карты расширения.

Основное отличие ризер-карты NLX от адаптера Slimline состоит в том, что системная плата также устанавливается в специальный слот, называемый NLX Riser Connector. Этот разъем содержит не только информационную шину, но и шину питания. Таким образом, после установки системная плата автоматически оказывается подключенной к шине питания.

Кроме того, на ризер-карте располагаются различные разъемы, которые ранее располагались на системной плате, — IDE, FDD, USB, блок питания и др. Ризер-карта является фактически кросс-платой, через которую происходит коммутация всех модулей системного блока между собой, а также подача питания на них. На системной плате NLX располагаются гнезда ЦП, слоты для модулей памяти, чипсет, микросхемы BIOS и кэш-памяти.

Все внешние разъемы (LPT, COM, Audio и др.) в соответствии с новым стандартом смещены к краю системной платы. Данное технологическое решение обеспечивает необходимую гибкость при установке одной и той же системной платы в разные корпуса как типа Desktop, так и Mini-Tower.

Стандарт NLX практически превращает ПК в устройство, состоящее из двух элементов: системной платы и корпуса со стандартными разъемами для связи с внешними устройствами.

MicroATX. Представленный в конце 1990-х гг. стандарт micro-АТХ — в основном меньшая версия АТХ спецификации Intel, предназначенная для компактных и дешевых систем потребителя с ограниченными потребностями в расширении системы.

Максимальный размер платы — квадрат со стороной 9,6", и она разработана, чтобы вписаться или в корпус стандарта АТХ, или в один из новых проектов настольного корпуса Microtower. Панель ввода-вывода аналогична проекту АТХ, но есть только условия для размещения не более четырех слотов расширения (АТХ позволяет семь). MicroATX также позволяет использование малогабаритного источника электропитания.

FlexATX. FlexATX — естественное развитие MicroATX, который был первоначально выпущен в конце 1999 г. Стандарт FlexATX дополнительно к спецификации MicroATX выражает только требования к системной плате, а не полное системное решение, не детализирует интерфейсы, память или графические технологии. Эти требования переадресованы к дизайнерам и системным проектировщикам. Выбор процессора, однако, ограничен разъемами формата «гнездо»(Socket).

Основное различие между FlexATX и microATX — в том, что новый форм-фактор уменьшает размер системной платы до 9 х 9,5”. Это приводит к снижению полных системных затрат, а также облегчает проектирование малогабаритных систем. FlexATX форм-фактор обладает обратной совместимостью со спецификациями АТХ и microATX — использование тех же самых установочных отверстий системной платы.

ITX. Весной 2000 г. VIA Technologies объявила о выпуске системной платы еще меньшего размера, чем FlexATX. Размеры платы ITX 8.5x7.5” что на полтора дюйма меньше по ширине, чем у конкурента Intel. Ключевое новшество, которое позволяет IТХ достигать такой компактной формы, — специально спроектированный блок питания со встроенным вентилятором. Его размеры (глубина/ширина/высота) 174 х 73 х 55 мм (ср. со стандартом АТХ, где размеры блока питания 140 х 150 х 86 мм).

ВТК. Intel предложила в конце 2004 г. проект платы Balanced Technology Extended (сбалансированная расширенная технология), предназначенной для замены традиционных плат. Форм-фактор ВТХ является масштабируемым и допускает широкий спектр систем различных размеров и назначений, позволяя заменить единой спецификацией платы АТХ, microATX и FlexATX. Внутренние компоненты могут быть размещены на плате таким образом, что ЦП и другие тепловыделяющие схемы могут охлаждаться единственным воздушным потоком. Этот поток создается универсальным охладителем, который именуется «Thermal Module».

Ризер-архитектуры. Конструкция платы NLX является примером ризер-архитектур, потребность в которых возникла в конце 1990-х гг. и которые способствуют уменьшению полных системных затрат и в то же самое время увеличивают гибкость процесса производства системы. Первым примером была спецификация AMR (Audio/Modem Riser или аудиомодемная ризер-карта), представленная летом 1998 г. AMR поддерживала как звуковые, так и модемные функции, однако имела некоторые недостатки, которые были идентифицированы после выпуска спецификации. Это были трудности поддержки устройств Plug-and-Play (РnР, Р&Р), а также тот факт, что ризер-карта занимала один слот РСI.

Затем были определены новые спецификации ризер-архитектуры, которые комбинируют большее количество функций на единственной плате: это аудиоадаптер, модем, широкополосные технологии и интерфейсы локальной сети. Две самые современные спецификации ризер-архитектуры включают конкурирующие CNR и ACR.

Предложенная Intel спецификация CNR (Communication and Networking Riser) определяет аппаратную масштабируемую ризер-карту системной платы и интерфейс, которая поддерживает аудио, модем и локальную сеть в основных наборах микросхем.

Интеграция на системной плате аудио, модема и подсистем локальной сети также проблематична, поскольку увеличиваются шумовые наводки, от которых, в свою очередь, деградирует работа каждой системы. CNR решает эти проблемы, физически отделяя эти чувствительные к наводкам системы от «шумной» среды системной платы.

Спецификация CNR предполагает наличие пяти интерфейсов:

  • интерфейс АС97. Поддерживает звуковые и модемные функции на CNR-плате;

  • локальная сеть (LAN Connect Interface — LCI). Обеспечивает 10/100 локальную сеть или домашнюю телефонную сеть на основе набора микросхем Intel;

  • независимый от среды интерфейс (МII — Media Independent Interface). Обеспечивает 10/100 локальную сеть или домашнюю телефонную сеть на основе сетевых возможностей CNR платформ, использующих интерфейс МII;

  • универсальная последовательная шина (USB);

  • шина сопровождения системы (System Management Bus — SMBus). Обеспечивает функциональными возможностями Plug-and-Play (РnР) плату CNR.

Каждая плата CNR может использовать максимально четыре интерфейса (путем выбора типа локальной сети).

Конкурирующая спецификация ACR поддерживается содружеством ведущих компаний в области вычислительных средств и связи, включая 3COM, AMD, VIA Technologies и Lucent Technologies. Подобно CNR, спецификация определяет форм-фактор интерфейсы для множества подсистем связи и звуковых проектов в настольных персональных компьютерах.

Интерфейс ACR комбинирует несколько существующих шин связи и добавляет новые и прогрессивные шины связи, отвечая на спрос промышленности на дешевые, высокоэффективные периферийные устройства связи. ACR поддерживает модем, аудио, локальную сеть и xDSL. Зарезервированы контакты для поддержки будущих беспроводных шин. Подобно AMR, спецификация ACR была предназначена, чтобы занять или заменить существующий PCI-слот. Это фактически уменьшает число доступных РСI -слотов на один независимо от того, используется ACR-соединитель или нет. Хотя это может быть приемлемо в системных платах больших размеров (АТХ), потеря РСI-соединителя в системной плате microATX или FlexATX, где обычно предусматривают только два слота расширения, может оказаться недопустимой для пользователя. CNR-спецификация преодолевает эту проблему, осуществляя стратегию совмещенного разъема подобно совмещенным слотам ISA/PCI. В этом случае соединители CNR и РСI эффективно используют одно и то же пространство устройств ввода-вывода.

Соседние файлы в папке лабораторные