Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Чет про программирование / 15) Стек, рекурсия

.docx
Скачиваний:
26
Добавлен:
25.04.2015
Размер:
15.41 Кб
Скачать

Стек

Стек (англ. stack — стопка) — структура данных, представляющая собой список элементов, организованных по принципу LIFO (англ. last infirst out, «последним пришёл — первым вышел»).

Чаще всего принцип работы стека сравнивают со стопкой тарелок: чтобы взять вторую сверху, нужно снять верхнюю.

Стек является чрезвычайно удобной структурой данных для многих задач вычислительной техники. Наиболее типичной из таких задач является обеспечение вложенных вызовов процедур.

Предположим, имеется процедура A, которая вызывает процедуру B, а та в свою очередь - процедуру C. Когда выполнение процедуры A дойдет до вызова B, процедура A приостанавливается и управление передается на входную точку процедуры B. Когда B доходит до вызова C, приостанавливается B и управление передается на процедуру C. Когда заканчивается выполнение процедуры C, управление должно быть возвращено в B, причем в точку, следующую за вызовом C. При завершении B управление должно возвращаться в A, в точку, следующую за вызовом B. Правильную последовательность возвратов легко обеспечить, если при каждом вызове процедуры записывать адрес возврата в стек. Так, когда процедура A вызывает процедуру B, в стек заносится адрес возврата в A; когда B вызывает C, в стек заносится адрес возврата в B. Когда C заканчивается, адрес возврата выбирается из вершины стека - а это адрес возврата в B. Когда заканчивается B, в вершине стека находится адрес возврата в A, и возврат из B произойдет в A.

ЯП Паскаль использует стек для размещения в нем локальных переменных процедур и иных программных блоков. При каждой активизации процедуры память для ее локальных переменных выделяется в стеке; при завершении процедуры эта память освобождается. Поскольку при вызовах процедур всегда строго соблюдается вложенность, то в вершине стека всегда находится память, содержащая локальные переменные активной в данный момент процедуры.

Этот прием делает возможной легкую реализацию рекурсивных процедур. Когда процедура вызывает сама себя, то для всех ее локальных переменных выделяется новая память в стеке, и вложенный вызов работает с собственным представлением локальных переменных. Когда вложенный вызов завершается, занимаемая его переменными область памяти в стеке освобождается и актуальным становится представление локальных переменных предыдущего уровня. За счет этого в языках PASCAL и C любые процедуры/функции могут вызывать сами себя. 

Рекурсия

В ряде приложений алгоритм решения задачи требует вызова подпрограммы из раздела операторов той же самой подпрограммы, т.е. подпрограмма вызывает сама себя. Такой способ вызова называется рекурсией. Рекурсия полезна прежде всего в тех случаях, когда основную задачу можно разделить на подзадачи, имеющие ту же структуру, что и первоначальная задача. Подпрограммы, реализующие рекурсию, называются рекурсивными.

Частные случаи рекурсии

Хвостовая рекурсия — специальный случай рекурсии, при котором любой рекурсивный вызов является последней операцией перед возвратом из функции. Подобный вид рекурсии примечателен тем, что может быть легко заменён на итерацию путём формальной и гарантированно корректной перестройки кода функции. Оптимизация хвостовой рекурсии путём преобразования её в итерацию реализована во многих оптимизирующих компиляторах. В некоторых функциональных языках программирования спецификация гарантирует обязательную оптимизацию хвостовой рекурсии.

В языке Паскаль допускается также и косвенная рекурсия, когда, например, процедура, процедура А вызывает процедуру В, а та, в свою очередь,- процедуру А. Длина таких цепочек вызовов может быть произвольной, однако при разработке программы необходимо тщательно следить за тем, чтобы рекурсивный алгоритм был сходимым, то есть не приводил к бесконечным взаимным вызовам подпрограмм.

Образно косвенную рекурсию можно описать так. Перед зеркалом 1 стоит зеркало 2, в котором отражается само зеркало 1. В последнем видно зеркало 2 и т.д.

Дерево рекурсии

Все рекурсивные вызовы функции легко представить (изобразить) в виде дерева.