Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гидро и пневмопривод Комплект / Насосы гидропривод / лекции ОГИТ / Лекция №9 гидравлический расчет трубопроводов.doc
Скачиваний:
400
Добавлен:
25.04.2015
Размер:
298.5 Кб
Скачать

Лекция 9. Гидравлический расчет трубопроводов

Простые трубопроводы постоянного сечения

Последовательное соединение трубопроводов

Параллельное соединение трубопроводов

Разветвлённые трубопроводы

Трубопроводы с насосной подачей жидкости

Жидкость движется по трубопроводу благодаря тому, что ее энергия в начале трубопровода (у источника гидравлической энергии) больше, чем в конце. Этот перепад (разница) уровней энергии может быть создан тем или иным способом: работой насоса, за счет разности уровней жидкости, давлением газа.

Важнейшей задачей, возникающей при проектировании множества гидросистем различного назначения, является задача определения энергетических характеристик источника гидравлической энергии. К таким системам относятся гидросистемы цехового технологического оборудования, мобильные гидрофицированные машины, системы водоснабжения и отопления и др. Источниками энергии таких гидросистем являются насосные станции, газобаллонные системы, водонапорные башни. Энергетические характеристики источника энергии – подача (расход) и давление – должны быть такими, что бы обеспечивались необходимые расход и давление на выходе системы – гидродвигателе, водопроводном кране и т.п.

Реже встречается обратная задача, когда при известных энергетических характеристиках источника энергии необходимо узнать, какими будут максимально возможный расход и давление на выходе гидросистемы.

В машиностроении приходится иметь дело чаще всего с такими трубопроводами, движение жидкости в которых создаётся работой насоса. В гидротехнике и водоснабжении, а также во вспомогательных устройствах течение жидкости происходит, как правило, за счет разности уровней давлений (разности нивелирных высот).

Простые трубопроводы. Простым (коротким) называют тру­бопровод, по которому жидкость транспортируют от питателя к приемнику без промежуточных ответвлений потока. При этом необходимо учитывать не только потери напора на трение по длине трубопровода, но и скоростной напор и местные потери напора, которыми в данном случае нельзя пренебречь.

Исходным при расчетах простого трубопровода (рис. )

яв­ляется уравнение баланса напоров (уравнение Бернулли)

Схема к расчету короткого трубопровода

Учитывая, что v21/2g=0, Н1H2= H; v2 = v1 и

получим

откуда средняя скорость исте­чения жидкости

Введем обозначение где — коэффициент скорости, а

—коэффициент сопротивления системы

Следовательно, окончательно

Расход жидкости, пропускаемой через короткий трубопровод, можно определить по формуле

где =— коэффициент расхода; S площадь живого сечения.

Простые трубопроводы постоянного сечения гидросистем

Пусть простой трубопровод постоянного сечения расположен произвольно в пространстве, имеет общую длинуl и диаметр d и содержит ряд местных сопротивлений . В начальном сечении (1—1) имеем нивелирную высотуZ1 и избыточное давление P1, а в конечном (2—2) — соответственно Z2 и P2. Скорость потока в этих сечениях вследствие постоянства диаметра трубы одинакова и равна V.

Запишем уравнение Бернулли сечений 1—1 и 2—2

;

В этом выражении - суммарные потери на трение по длине и на местных сопротивлениях на участке трубы длиной l. Потери по длине в соответствии с формулой Дарси будут

.

Потери на местных сопротивлениях в соответствии с формулой Вейсбаха составят

.

Учитывая уравнение неразрывности потока и постоянство диаметра трубы т. е. и , скоростные напоры в обеих частях можно сократить. Кроме того величины и, выражающие удельную потенциальную энергию положения, для гидросистем технологического оборудования, как уже не раз отмечалось, много меньше потенциальной энергии сжатияи отличаются они между собой очень незначительно. По этой причине в дальнейшем их можно не учитывать. Тогда уравнение Бернулли примет вид

или

.

Выразив величину через расход:

,

и подставив её в предыдущее выражение, получим

.

Введём обозначение

.

Величину - будем называтьгидравлическим сопротивлением трубопровода.

С учётом этого получим

.

Последнее выражение наз+ваетсяхарактеристикой трубопровода. Эта характеристика представляет собой зависимость суммарных потерь давления (напора) от расхода в трубопроводе .

Если в трубопроводе установлены гидравлические аппараты, имеющие свои сопротивления, то их необходимо добавить к коэффициенту сопротивления трубопровода, и в результате получится суммарное гидравлическое сопротивления.

Длинные трубопроводы. Это трубопроводы постоянного по длине диаметра, у которых основными являются потери напора по длине, а местными потерями напора и скоростным напором можно пренебречь.

Потери напора по длине трубопровода определяют

по формуле Дарси—Вейсбаха:

Учитывая, что расход Q = VS и скорость движения потока тогда

или

где А удельное сопротивление трубопровода, определяемое по справочным таблицам;

Для переходной области удельное сопротивление Ао=А*,

где  — поправочный коэффициент, учитывающий зависимость коэффициента гидравлического трения от числа Рейнольдса.

Кроме удельного сопротивления А в литературе по гидравлике для решения задач приводится способ расчета длинных трубо­проводов, базирующийся на формуле Шези.

Широко применяемые гидравлические параметры — это мо­дуль расхода , сопротивление трубопровода ST=A*l, про­водимость трубопровода . С помощью вышеука­занных параметров потери напора по длине можно определить следующим образом:

Последовательное соединение трубопроводов

Последовательный трубопровод состоит из нескольких труб различной длины и различного диаметра, соединённых между собой.

Последовательное соединение трубопроводов. Рассмотрим тру­бопровод, состоящий из п последовательно соединенных труб различных диаметров. Каждый участок этого трубопровода имеет длину l и диаметр d.

В каждом из этих трубопроводов могут иметься свои местные сопротивления. Течение в жидкости в такой трубе подчиняется следующим условиям:

  • расход на всех участках трубопровода одинаков, т.е.;

  • потери давления (напора) во всём трубопроводе равны сумме потерь на каждом участке:

При движении жидкости по трубопроводу весь напор Н будет затрачен на преодоление потерь напора по длине.

Полная потеря напора в длинном трубопроводе равна сумме потерь на отдельных участках

где l — длина участка, м; A удельное сопротивление участка.

Для гидросистем:

.

С учётом сказанного нетрудно получить уравнение для определения суммарных потерь давления, которое примет вид

,

где - суммарное гидравлическое сопротивление всего трубопровода.

Величина суммарного сопротивления с учётом ранее полученной формулы для простых трубопроводов составит.

В общем случае выражение, описывающее суммарное гидравлическое сопротивление сложного трубопровода, будет выглядеть:

.

Полученное уравнение, определяющее суммарные потери давления, представляет собой характеристику сложного трубопровода, которая является суммой характеристик простых трубопроводов. Это уравнение позволяет узнать, какие энергетические характеристики должен иметь источник энергии, чтобы жидкость могла протекать по всему трубопроводу. Однако в конечной точке этой трубы энергия жидкости будет равна нулю. Если в конце трубы необходимо иметь какое-то давление(например, чтобы преодолевать нагрузку) к величиненужно добавить эту величину. Кроме того, т.к. в общем случае величина скоростного напора в началеи в концетрубопровода из-за разных диаметров различны, необходимо добавить и эту разницу к. В результате энергия, которой должен обладать источник, должна составлять

.