Скачиваний:
59
Добавлен:
25.04.2015
Размер:
104.96 Кб
Скачать

141

Тема 13

Тема 13

ОСНОВЫ ТЕОРИИ ПОДОБИЯ ГИДРОМЕХАНИЧЕСКИХ ПРОЦЕССОВ

1. Геометрическое и физическое подобие.

2. Подобие гидромеханических процессов.

3. Критерии подобия.

13.1. Геометрическое и физическое подобие

Теория подобия это учение об условиях подобия физических явлений. Теория подобия опирается на учение о размерности физических величин, служит основой для экспериментального и математического моделирования и дает методы анализа и обобщения экспериментальных и теоретических результатов. Предметом теории подобия является установление критериев подобия различных физических явлений и изучение с помощью этих критериев свойств самих явлений. Физическое подобие является обобщением элементарного и наглядного понятия геометрического подобия. При физическом подобии поля соответствующих физических параметров двух систем подобны в пространстве и времени. Например, при кинематическом подобии существует подобие полей скорости для двух рассматриваемых движений, при динамическом подобии реализуется подобие систем действующих силовых полей различной природы ( силы тяжести, силы давления, силы вязкости и т.д. ), механическое подобие ( например, подобие двух потоков жидкости или газа, подобие двух упругих систем и т.п. ) предполагает наличие геометрического, кинематического и динамического подобий, при подобии тепловых процессов подобны соответствующие поля температур и тепловых потоков.

Теория гидродинамического подобия - часть общей теории физического подобия, в которой одним из основных является понятие о сходственных величинах. Две величины jА и jВ , имеющие одинаковый физический смысл, называются сходственными, если они имеют общее начало отсчета и связаны соотношением

jА = mj jВ ,

где mj - положительная безразмерная величина, одна и та же для всей группы величин j .

Например, точка А и В являются сходственными, если их радиусы-векторы и имеют общее начало координат и связаны соотношением

= mr .

Моменты времени tА и tВ сходственны, если имеют общее начало отсчета и связаны соотношением

tА = mt tВ.

Величины mi ( i = r, t, ... ) называются масштабами ( константами ) подобия, а связи типа jА = mj jВ - преобразованием подобия.

13.2. Подобие гидромеханических процессов

Два гидромеханических процесса А и В называются подобными, если они удовлетворяют следующим требованиям :

1) математическое описание процессов А и В в одной и той же системе координат отличается только значениями входящих в него размерных величин, тогда как вид уравнений, связывающих эти величины, одинаков;

2) для любого значения величины jВ процесса В существует сходственное ей значение jА = mj jВ процесса А;

3) безразмерные уравнения процессов А и В одинаковы.

Как вытекает из анализа уравнений движения вязкой жидкости, необходимым условием подобия двух потоков является одинаковость условий однозначности ( начальных и граничных условий ), сформулированных в безразмерных величинах, а также одинаковость безразмерных чисел подобия, составленных из параметров, заданных в условиях задачи.

13.3. Критерии подобия

Рассмотрим условия динамического подобия при обтекании тел потоком вязкого сжимаемого газа. Для этого запишем систему уравнений - неразрывности, количества движения, энергии и состояния газа, а также соответствующие граничные и начальные условия. При этом будем считать m = const, l = const, cp = const. Примем за характерную длину некоторый линейный размер летательного аппарата L. Другими характерными параметрами являются характеристики невозмущенного потока : V¥ - скорость, r¥ - плотность, р¥ - давление, T¥ - температура, i¥ - энтальпия.

Введем безразмерные величины :

Здесь - единичный вектор массовой силы.

Преобразуем сначала уравнение количества движения и уравнение неразрывности, выражая в них все размерные величины через безразмерные, получим

Здесь символы означают, что дифференцирование производится в безразмерных координатах.

Уравнения являются размерными. Однако в них размерные величины представлены в виде коэффициентов с одинаковыми размерностями. В уравнениях такими размерными множителями являются

Поделив на любой из указанных размерных множителей, получим уравнения в безразмерной форме.

Для того чтобы получить критерии подобия, разделим обе части уравнения количества движения на величину . , а уравнения неразрывности - на . Тогда

Здесь

Аналогично выполняется обезразмеривание уравнения энергии. В уравнениях и граничных условиях будут содержится ряд безразмерных параметров, составленных из размерных величин :

число Фруда ,

число Рейнольдса ,

число Эйлера ,

число Струхаля ,

число Маха М = V/a,

число Прандтля ,

число Нуссельта .

Здесь L, V, F, p, а, Т - соответственно длина, скорость, массовая сила, давление, скорость звука и время, характерные для данной задачи.

Число Рейнольдса представляет собой критерий вязкости и характеризует отношение инерционных сил и сил вязкости. Число Фруда определяет отношение инерционной силы к силе тяжести. Число Струхаля характеризует отношение конвективного ускорения движения частицы к локальному ускорению и учитывает нестационарность движения. Число Маха - критерий сжимаемости, характеризует отношение инерционной силы к силе давления. Число Прандтля является мерой отношения влияния вязкости и теплопроводности.

Используя безразмерные числа , уравнение количества движения и неразрывности представим в следующем виде :

Указанные необходимые условия являются также и достаточными для всех случаев, для которых доказана теорема существования и единственности решения дифференциальных уравнений движения вязкой жидкости.

Числа подобия, составленные из параметров, заданных в условиях однозначности, называются критериями подобия. Из равенств критериев подобия в двух сравниваемых потоках вытекают соотношения между масштабами величин. При практическом моделировании обычно масштабы физических параметров ( например, вязкостей, плотностей жидкостей ), а также линейный масштаб задаются, а остальные масштабы вычисляются через них. Для обеспечения подобия необходимо, строго говоря, равенство чисел Re и Fr требует моделирования вязкости, что возможно лишь в исключительных случаях. Поэтому на практике моделирование выполняется по одному главному числу, обеспечивающему подобие главной ( доминирующей в данном явлении ) силы. Соответственно опыту практического моделирования для подобия потоков со свободной поверхностью ( безнапорных ) должно быть обеспечено равенство чисел Фруда, а для напорных потоков - равенство чисел Рейнольдса ( вне области квадратичного сопротивления ). Число Эйлера при моделировании потоков несжимаемой жидкости обычно является неопределяющим и зависит от чисел Re и Fr. Для потоков сжимаемого газа число Эйлера связано с числом Маха соотношением . Число Маха является в большинстве случаев определяющим критерием.

Размерные физические параметры, входящие в критерии подобия, могут принимать для подобных систем сильно различающиеся значения, одинаковыми должны быть лишь безразмерные критерии подобия. Это свойство подобных систем и составляет основу моделирования.

Практические применения теории подобия весьма обширны. Она дает возможность предварительного качественно-теоретического анализа и выбора системы определяющих безразмерных параметров сложных физических явлений. Теория подобия является основой для правильной постановки и обработки результатов экспериментов.

Соседние файлы в папке 055866_B4437_lekcii_vvedenie_v_aerogidromehaniku_i_gidravliku