Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

1_kurs_2_semestr / Genetika_2_seminar

.docx
Скачиваний:
74
Добавлен:
26.04.2015
Размер:
31.17 Кб
Скачать

1.исследуя структуру молекулы ДНК, пришли к выводу, что сахарофосфатный остов находится на периферии молекулы ДНК, а пуриновые и пиримидиновые основания - в середине. Причем последние ориентированы таким образом, что между основаниями из противоположных Цепей могут образоваться водородные связи. Из построенной ими модели выявилось, что какой-либо пурин в одной цепи всегда связан водородными связями с одним из пиримидинов в другой цепи. Такие пары имеют одинаковый размер по всей длине молекулы. Не менее важно то, что аденин может спариваться лишь с тимином, а гуанин только с с цитозином. При этом между аденином и тимином образуются две водородные связи, а между гуанином и цитозином - три .

2.Реплика́ция ДНК — процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты, идущий во время синтетической (S) фазы жизненного цикла клетки на матрице родительской молекулы ДНК. При этом генетический материал, зашифрованный в ДНК, удваивается и в процессе последующего деления делится между дочерними клетками. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков.

Ферменты и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и активностью ДНК-полимеразы, способной распознать и исправить ошибку. Репликация у эукариот осуществляется несколькими разными ДНК-полимеразами. Далее происходит закручивание синтезированных молекул по принципу суперспирализации и дальнейшей компактизации ДНК. Синтез энергозатратный.Цепи молекулы ДНК расходятся, образуют репликационную вилку, и каждая из них становится матрицей, на которой синтезируется новая комплементарная цепь. В результате образуются две новые двуспиральные молекулы ДНК, идентичные родительской молекуле.

3. РНК — рибонуклеиновая кислота, имеет много общего со структурой ДНК, но отличается от нее рядом признаков: 1. углеводом РНК, к которому присоединяются пуриновые или пиримидиновые основания и фосфатные группы, является рибоза; 2. в состав РНК, как и в состав ДНК, входят азотистые основания аденин, гуанин и цитозин. Но РНК не содержит тимина, его место в молекуле РНК занимает урацил; 3. РНК — одноцепочечная молекула; 4. так как молекула РНК одноцепочечная, то правило Чаргаффа, установленное для ДНК, может не выполняться по равенству содержания оснований.

РНК, присутствующие в клетках как протак и эукариот, бывают трех основных видов: матричные РНК (мРНК), рибосомные РНК (рРНК) и транспортные РНК (тРНК).

Матричные РНК выполняют функцию матриц белкового синтеза. В ядре клеток эукариот содержится РНК четвертого типа гетерогенная ядерная РНК(гяРНК), которая является точной копией (транскриптом) соответствующей ДНК. Процесс транскрипции осуществляется в ядре на ДНК, гяРНК после созревания будет служить матрицей для синтеза белка в цитоплазме.

Молекулы тРНК узнают в цитоплазме соответствующий триплет (кодон в мРНК) и переносят нужную аминокислоту к растущей полипептидной цепи. Узнавание кодона в мРНК осуществляется с помощью трех последовательных оснований в тРНК, называемыхантикодонами. Аминокислотный остаток может присоединятся к 3 — концу молекулы тРНК. Считают, что для каждой аминокислоты имеется, по крайней мере, одна тРНК. Молекула тРНК содержит около 75 нуклеотидов, ковалентно связанных друг с другом в линейную цепочку.

рРНК— несколько молекул РНК, составляющих основу рибосомы. Основной функцией рРНК является осуществление процесса трансляции - считывания информации с мРНК при помощи адапторных молекул тРНК и катализ образования пептидных связей между присоединёнными к тРНК аминокислотами.

4. Генетический код, система зашифровки наследственной информации в молекулах нуклеиновых кислот, реализующаяся у животных, растений, бактерий и вирусов в виде последовательности нуклеотидов. В природных нуклеиновых кислотах — дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК) — встречаются 5 распространённых типов нуклеотидов (по 4 в каждой нуклеиновой кислоте), различающихся по входящему в их состав азотистому основанию. В ДНК встречаются основания: аденин (А), гуанин (Г), цитозин (Ц), тимин (Т); в РНК вместо тимина присутствует урацил (У). Кроме них, в составе нуклеиновых кислот обнаружено около 20 редко встречающихся (т. н. неканонических, или минорных) оснований, а также необычных сахаров. Т. к. количество кодирующих знаков Г. к. (4) и число разновидностей аминокислот в белке (20) не совпадают, кодовое число (т. е. количество нуклеотидов, кодирующих 1 аминокислоту) не может быть равно 1.

5. Ген - совокупность сегментов ДНК, которые вместе образуют наследственную единицу, отвечающую за функциональную продуктивность, т.е.за белок или т-РНК, или р-РНК. В сост входит: 1) единица транскрипции, т.е.участок ДНК, кодирующий не зрелую РНК; 2) промотр - длина гена может быть от 190-16000 пар нуклеотид. Ген явл единицей ф-и, т.е.есть ген целиком, а не отдельн его куски, кодирует РНК. Явл единицей мутации и един рекомбинации могут быть отдельные нуклеотиды в гене, т.е.даже 2 соседн. нуклеотиды могут разъединить с помощью кроссинговера и даже 1 нуклеотид может мутировать, место мутации в гене наз сайт. Сайты, на которых мутации происход. часто - горячи точки. У прокариотов гены непрерывные, т.е. сост. только из экзонов.у эукориотов гены прерывистые, т.е. сост. из экзонов и интронов. Перекрывающий ген - ген явл. частью др. гена, происходит наложение рамок считывания. При образовании зрелой и-РНК один экзон может соединиться с др. экзонам, образуется семейство, близких по строению и-РНК. Гены способны перемещаться - троспозоны. Ген и его копии и псевдогены образ семейство. 2 группы ДНК: структурные - кодируют белки и и-РНК; регуляторы - регулируют работу структурных генов. На эти 2 группы генов приходится от 15-98% всей ДНК, а остальная ДНК - избыточная, они копируют уже имеющиеся гены.

6. клетки бактерий окружена оболочкой,а внутри цитоплазма, ядерный аппарат,рибосомы,ферменты и др. включения. в отличии от эукариот у них отсутствует аппарата Гольджи митохондрий и эндоплазматической сети.Вирусы содержат одну из нуклеиновых кислот(ДНК или РНК) они могут быть одноцепочечные или двухцепочечные.

7. Наследственность Цитоплазматическая внеядерная наследственность, наследование признаков, которые контролируются факторами, присутствующими в клеточной цитоплазме. Цитоплазматическая наследственность хорошо изучена у растений и низших животных, однако недавно она была обнаружена и у человека.

8. Плазмиды — внехромосомные генетические структуры бактерий, способные автономно размножаться и существовать в цитоплазме бактериальной клетки. Некоторые плазмиды могут с определенной частотой включаться) в бактериальный геном и размножаться (копироваться) затем вместе с ним как его составная часть

Плазмиды играют важную роль в распространении устойчивости к антибиотикам среди бактерий. плазмиды IncP-1 как многие тысячи лет назад, так и в настоящее время перемещаются между бактериями различных видов, а также взаимодействуют друг с другом, что повышает вероятность распространения генов устойчивости к действию антибиотиков. Плазмиды, несущие гены устойчивости к действию антибиотиков и находящиеся в разных бактериях, могут встречаться и обмениваться генетическим материалом. В результате появляются рекомбинантные плазмиды, содержащие гены, работающие в разных бактериальных клетках. Это способствует дальнейшей адаптации и мобильности, а, следовательно, распространению устойчивости к антибиотикам среди бактерий разных видов

9. Передача наследственной информации у микроорганизмов может осуществляться тремя способами: трансформацией, трансдукцией и конъюгацией. Трансформация - это многоступенчатый процесс. В его начале происходит адсорбция фрагмента ДНК на бактериальной оболочке. Затем молекулы ДНК проникают внутрь клетки и встраиваются в структуру хромосомы бактерии. Путем трансформации переносится, как правило, один признак. Трансформация может осуществляться между бактериями одного вида, тогда ее называют гомотрасформацией, а также между разными видами (гетеротрансформация). Процесс конъюгации включает несколько этапов: момент встречи бактерий; образование цитоплазматического мостика между двумя клетками и спаривание и встраивание полученной таким образом определенной части ДНК в генетический аппарат бактерии-реципиента.Трансдукция— процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом. Общая трансдукция используется в генетике бактерий для картирования генома и конструирования штаммов. К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.Бактерии обладают способностью изменять свои свойства, а также передавать приобретенные свойства по наследству. Пластичность генетической информации, присущая микроорганизмам, обеспечивает им высокую степень приспособленности к условиям окружающей среды.

10.

11. Проявление действия генов на биохимическом уровне начали изучать в 1935 г. Бидл и Эфрусси с исследований двух рецессив­ных мутаций окраски глаз у дрозофилы по генам vermilion (яркие глаза) и cinnabar (киноварные глаза). У особей, гомози­готных по этим генам, не образуется пигмент, определяющий нормальную окраску глаз. В результате глаза отличаются от осо­бей дикого типа. Сложные глаза дрозофилы развиваются из за­чатка или диска, образование которого происходит на стадии личинки. Глазной имагинальный диск можно пересадить в по­лость тела другой личинки, где он продолжит свое развитие. Бидл и Эфрусси произвели имплантацию эмбриональной ткани дисков глаз из личинок мух с мутантными генами verrnilion и cinnabar в личинки нормальных мух-дрозофил и установили, что после метаморфозы этих личинок в зрелых мух имплантирован­ная ткань глаза развилась в дополнительные глаза нормальной окраски. Отсюда был сделан вывод, что в тканях мутантных мух не хватало какого-то вещества для синтеза нормальной окраски глаз. На основании опытов Бидл и Эфрусси пришли к выводу, что образование пигмента идет по пути: предшественник — вещество I— вещество II— пигмент .

12. Дифференцировка клеток — процесс, при котором во время дроб­ления оплодотворенного яйца клетки постепенно начинают отли­чать одна от другой, что приводит в конечном итоге к формиро­ванию зародыша со многими специализированными тканями. Клет­ки разных тканей одного и того же организма отличаются друг от друга формой, размерами и строением. В то же время клетки одинаковых тканей даже у животных разных видов имеют сход­ство. Это связано с тем, что каждый из типов клеток специали­зирован для выполнения только им свойственных функций. На­пример, нервные клетки приобретают способность передать нервные импульсы, железистые клетки — способность к секре­ции соответствующих веществ и т. д.

Выяснение механизмов дифференцировки клеток —одна из главных задач современной биологии. Поскольку дифференци­ровка необратима, некоторые ученые в конце прошлого века считали, что в ее основе лежит неравное распределение генов в те или иные дифференцирующиеся клетки в ходе последователь­ных клеточных делений. Это предположение было опровергнуто. В начале нашего века было показано, что каждая соматическая клетка имеет такой же набор хромосом, как и исходная оплодо­творенная яйцекле

13.

14. Оперон, группа функционально связанных между собой генов, детерминирующих синтез белков-ферментов, относящихся к последовательным этапам какого-либо биохимического процесса.Структурный ген -Любой ген, кодирующий какую-либо полипептидную цепь или молекулу РНК, включая регуляторные гены, которые кодируют продукты, определяющие экспрессию других структурных генов. Ген-оператор (О), определяет, будут ли гены неактивными.Ген-регулятор - Ген, кодирующий белок-репрессор, взаимодействующий с геном-оператором и таким образом регулирующий транскрипцию “своего” оперона; мутации в Г.-р., нарушающие синтез белка-репрессора, приводят к конститутивной транскрипции соответствующего оперона.

15. популяция — это группа особей, в пределах которой вероятность скрещивания во много раз превосходит вероятность скрещивания с представителями других подобных групп. Чистая линия — группа организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей. В случае гена, имеющего несколько аллелей, все организмы, относящиеся к одной чистой линии, являются гомозиготными по одному и тому же аллелю данного гена.

Чистыми линиями часто называют сорта растений, при самоопылении дающих генетически идентичное и морфологически сходное потомство.Аналогом чистой линии у микроорганизмов является штамм.Чистые (инбредные) линии у животных с перекрестным оплодотворением получают путем близкородственных скрещиваний в течение нескольких поколений. В результате животные, составляющие чистую линию, получают одинаковые копии хромосом каждой из гомологичных пар.

17. в популяции бесконечно большого размера, в которой не действует отбор, не идет мутационный процесс, отсутствует обмен особями с другими популяциями, не происходит дрейф генов, все скрещивания случайны — частоты генотипов по какому-либо гену (в случае если в популяции есть два аллеля этого гена) будут поддерживаться постоянными из поколения в поколение.

18. В популяциях сельскохозяйственных животных постоянно из­меняются частоты генов, что можно наблюдать при анализе смежных поколений. Такие изменения составляют суть генети­ческой эволюции. Основные факторы эволюции: мутации, есте­ственный и искусственный отбор, миграции, дрейф генов.Одна из основных причин генетической изменчивости в попу­ляции — мутации. Спонтанные мутации каждого гена происходят с низкой частотой, однако общая частота мутаций всех генов, которые содержат популяции, очень велика. Мутации, возникаю­щие в половых клетках родительского поколения, приводят к из­менению генетической структуры у потомства. В популяции по­стоянной численности в отсутствие отбора большинство возник­ших мутаций быстро утрачивается, однако некоторые из них могут сохраниться в ряде поколений. Исчезновению мутантных генов из популяции противостоит действие мутационного процес­са, в результате которого образуются повторные мутации.

Генетическая структура популяций формируется и изменяется под действием естественного и искусственного отбора.

19. Спаривание животных, находящихся в родственных отно­шениях, называют инбридингом. Родственное спаривание, или инбридинг, —метод подбора, используемый в племенном животноводстве для закрепления ценных наследственных при­знаков того или иного животного в последующих поколениях. У родственных между собой животных наблюдается сходство по определенным парам аллелей, которые они получили от общего предка. Это сходство тем больше, чем ближе степень родства. Каждое животное в генотипе имеет аллельные гены как в гомозиготном, так и в гетерозиготном состоянии. В гетерозиготе обычно находятся вредные мутантные рецессивные гены. При инбридинге возрастает вероятность слияния тож­дественных гамет, несущих мутантные гены в гетерозиготном состоянии, и перехода их в гомозиготное состояние. Эта вероятность пропорциональна степени родства спариваемых животных. аким образом, в результате применения инбридинга проис­ходит изменение генных частот, возрастает вероятность выщепления рецессивных гомозигот, что является причиной инбредной депрессии, выражающейся в снижении жизнеспособности, пло­довитости животных, рождении аномальных особей.

20. Генофонд ,качественный состав и относительная численность разных форм (аллелей) различных генов в популяциях и населениях того или иного вида организмов.Термином генофонд обозначают аллельный состав популяции или всего населения вида, включая все варьирующие признаки и свойства вида или же ту или иную интересующую исследователя выборку из них. Рецессивный Г. — в основном укрытая от естественных отбора совокупность рецессивных аллелей

21. В ходе длительной эволюции животных наряду с полезными мутациями, подхватываемыми отбором, в популяциях или поро­дах накопился определенный спектр генных и хромосомных му­таций. Каждое поколение популяции наследует этот груз мута­ций, и в каждом из них возникают новые мутации, часть кото­рых передается последующим поколениям. Очевидно, что большая часть вредных мутаций отметается естественным отбором или элиминируется в процессе селекции. Это прежде всего доминантные генные мутации, фенотипически проявляющиеся в гетерозиготном состоянии, и количественные изменения наборов хромосом. Рецессивно действующие генные мутации в гетерозиготном состоянии и структурные перестройки хромосом, заметно не влияющие на жизнеспособность их носи­телей, могут проходить сквозь сито селекции. Они формируют генетический груз популяции. Таким образом, под генетическим грузом популяции понимают совокупность вредных генных и хромосомных мутаций. Различают мутационный и сегрегационный генетический груз. Первый формируется вследствие новых мута­ций, второй — в результате расщепления и перекомбинирования аллелей при скрещивании гетерозиготных носителей «старых» мутаций.

22. Полиморфизм — одновременное присутствие двух или более генетических форм одного вида в таком численном отношении, что их нельзя отнести к повторным мутациям. Поэтому термин «генетический (биохимический) полиморфизм» применяется в тех случаях, когда локус хромосомы в популяции имеет два и более аллелей с частотой больше 0,01. Ген, представленный более чем одним аллелем, называют поли­морфным геном. Основными методами изучения полиморфизма белков и фер­ментов являются электрофорез в крахмальном или акрил амидном геле и иммуноэлектрофорез. Белки (в том числе ферменты) находятся в растворе в виде частиц, несущих определенный электрический заряд, которые под действием электрического тока перемещаются к катоду или аноду.

23.в наст вр. у КРС открыто 12 систем гр.кр., у свиней17, у овец 16, у лошадей 9, у птиц 14. Из всех этих ситем наиболее сложной является В-система у КРС, в неё включ. Болеее 40 антигенов,кот. В различных комбинациях образуют более 500 аллелей. Если в системе имеется более аллелей , то такие системы назыв.ПОЛЛИАЛЛЕЛЬНЫМИ. К ним кроме В-систем относят системы С,8,А, у свиней-Е,b,М, у овец –В,А,С

24.Одна из главных областей практического примененения гр.кр. – контроль происхождения ж-ых. Он необходим при испытании свиноматок по качеству потомства осемененных смешанной спермой хряков, для установления моно- и дизиготности двоен, при получении жив-хметодом трансплантации эмбрионов, и т.д. Контроль возможен благодаря: 1)Кодоминантномупоследлвательностью антигенных факторов 2)Их неизменности в течении онтогенеза. 3)Огромному числу комбинаций гр.кр., кот., в пределахвида практически не бывают одинаковыми у 2-х особей, за искл. Монозиготных близнецов.

25. Иммунитет — свойство живых организмов предотвращать проникновение чужеродных молекул в клетки организмов, узнавать их, разрушать и выводить из организма.

Приобретенный иммунитет делится на активный и пассивный. Приобретенный активный иммунитет возникает после перенесенного заболевания или после введения вакцины (ослабленный микроб) в виде прививки.Приобретенный пассивный иммунитет развивается при введении сыворотки - готовых антител.Также пассивный иммунитет возникает при передаче антител ребёнку с молоком матери или внутриутробным способом.Также иммунитет делится на естественный и искусственный. Естественный иммунитет включает врожденный иммунитет и приобретенный активный (после перенесенного заболевания). А также пассивный при передачи антител ребёнку от матери. Искусственный иммунитет включает приобретенный активный после прививки (введение вакцины) и приобретенный пассивный (после сыворотки)

26. Проблема генетики иммунного ответа входит в состав большого раздела общей иммунологии, получившего название «Иммуногенетика». Иммуногенетика изучает четыре основных вопроса: 1) генетику гистосовместимости; 2) генетический контроль структуры иммуноглобулинов и других иммунологически значимых молекул (цитокинов, антигенов главного комплекса гистосовместимости и др.); 3) генетику антигенов; 4) генетический контроль силы иммунного реагирования.

Соседние файлы в папке 1_kurs_2_semestr