Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика / Физика Нуруллаев часть2.doc
Скачиваний:
289
Добавлен:
27.04.2015
Размер:
5.65 Mб
Скачать

1.11. Энергия электрического поля

Для того чтобы зарядить конденсатор, очевидно, нужно затратить некоторую работу. Следовательно, заряженный конденсатор обладает энергией, которая и будет равна работе, затраченной на его зарядку. Возникает ряд вопросов. Откуда взялась эта энергия? Где и в каком виде она сосредоточена?

Убедится в том, что в конденсаторе действительно запасена энергия, можно и экспериментально. Например, если обкладки заряженного конденсатора соединить проволокой, то она нагреется. В этом случае энергия конденсатора переходит во внутреннюю энергию проволоки в результате кратковременно текущего тока. Аналогичным образом к заряженному конденсатору можно присоединить лампочку. В результате она на мгновение вспыхнет. И, наконец, всем известно, какая громадная энергия выделяется при разряде молнии в гигантском конденсаторе «облако – Земля».

Для того чтобы ответить на поставленные в начале этого параграфа вопросы, рассчитаем сначала работу, необходимую для зарядки плоского конденсатора, а, следовательно, и энергию плоского конденсатора. Возьмем плоский незаряженный конденсатор, обкладки которого разделены слоем диэлектрика и будем небольшими порциями каким-либо образом переносить электроны с одной обкладки на другую. При этом на одной обкладке появятся лишние электроны, и она будет заряжаться отрицательно, а на второй обкладке будет их недостаток, и она будет заряжаться положительно. Отметим, что способ переноса электронов роли не играет. Сейчас мы ставим «мысленный» эксперимент. Далеко не все «мысленные» эксперименты можно вообще осуществить на практике. Однако в физике они широко используются теоретиками для проведения математических расчетов. Итак, пусть в момент, когда обкладки уже были заряжены зарядом , с одной обкладки на другую был еще перенесен заряд . Работа , необходимая для переноса заряда не зависит от траектории заряда и противоположна по знаку работе электрического поля (см. (1.7)):. Далее воспользуемся определением емкости конденсатора (1.27):. Тогда работа по переносу порции зарядас одной обкладки на другую. Интегрируя последнее выражение, находим полную работу, необходимую для заряжания конденсатора до заряда:

.

Используя формулу (1.27), полученное выражение можно записать и так:

.

Следовательно, энергия заряженного конденсатора:

. (1.32)

Выразим полную энергию конденсатора через напряженность электрического поля между пластинами (см. 1.20,б):

; .

Теперь вычислим объемную плотность энергии w или энергию, приходящуюся на единицу объема конденсатора:

.

Используя связь (1.24) между напряженностью электрического поля и вектором электрического смещенияполученный результат можно записать так:

. (1.33)

Объемная плотность энергии конденсатора уже не зависит от каких-либо его геометрических характеристик. Она выражается лишь через характеристики электрического поля конденсатора. Таким образом, можно предположить, что энергия конденсатора – это энергия электрического поля, заключенного между его обкладками. Тогда становятся ясными превращения энергии в опытах, описанных в начале параграфа. Всякий раз при разрядке конденсатора электрическое поле между обкладками исчезает, а энергия электрического поля переходит в другие виды энергии.

Выражение (1.33) для плотности электрического поля в какой то точке пространства (небольшой области), доказанное нами в случае электрического поля конденсатора, является универсальным. В общем случае энергия неоднородного электрического поля, заключенная в некотором объеме V, рассчитывается через объемный интеграл:

.

В заключение отметим, что энергия электрического поля уединенного заряженного проводника:

. (1.34)

Это выражение можно получить примерно так же, как и выражение (1.32).