Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика / Физика Нуруллаев часть2.doc
Скачиваний:
290
Добавлен:
27.04.2015
Размер:
5.65 Mб
Скачать

2.7. Правила Кирхгофа

Простые электрические цепи достаточно легко рассчитываются с применением законов Ома и законов последовательного и параллельного соединения проводов. Более сложные разветвленные электрические цепи удобнее рассчитывать при помощи правил Кирхгофа.

Рассмотрим произвольную разветвленную цепь, на отдельных участках которой включены источники тока с известными характеристиками. Точка цепи, в которой сходится более двух проводов (рис. 2.13), называется узлом.

Первое правило Киргхофа.Сумма токов втекающих в узел равна сумме токов, вытекающих из узла:

. (2.19)

Эквивалентная формулировка первого правила Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю . При этом втекающим и вытекающим из узла токам приписываются противоположные знаки. В нашем случае (рис. 2.13):.

Первое правило Кирхгофа, по сути, является следствием закона сохранения заряда. Оно также отражает тот факт, что при постоянном токе в узле не происходит нарастающее во времени накопление заряда того или иного знака. Для этого нужно, чтобы количество заряда, втекающее в узел в единицу времени, было равно количеству заряда, вытекающего из него.

Второе правило Кирхгофа. В произвольном замкнутом контуре алгебраическая сумма ЭДС, действующих в этом контуре, рана сумме падений напряжений на отдельных участках этого контура:

(2.20)

Некоторые слагаемые в (2.20) как слева, так и справа могут быть отрицательными. При решении конкретных задач токи на отдельных участках первоначально расставляются произвольным образом. Затем произвольным образом выбирается положительное направление обхода замкнутого контура (по часовой или против часовой стрелки). Если ток течет вдоль положительного направления, его берут со знаком «+», если против положительного направления – со знаком «». Если ЭДС действует вдоль положительного направления, т.е. при обходе контура источник проходится от клеммы «» к клемме «+», то значение ЭДС берется со знаком «+», и наоборот. Если в результате расчета сила тока получится отрицательной, то значит, мы не угадали направление тока на данном участке и его просто следует изменить на противоположное. Сама же величина тока, независимо от того, как мы расставим токи в начале решения задачи, получится правильной.

Для доказательства второго пра­ви­ла Кирхгофа рассмотрим произ­вольный замкнутый контур в цепи, который в общем случае может включать в себя внешние сопротивления и ЭДС на каждом участке (от узла до узла). Положительным будем считать направление по часовой стрелке. Пусть для определенности наш контур включает три участка (рис. 2.14). Направление токов расставим произ­воль­но. Применим закон Ома (2.18) к каж­до­му из трех неоднородных участков цепи. Для первого участка 2-1 работа элек­три­ческого поля положительна, а работа источника (он заряжается) отрицательна, поэтому:

.

На втором участке цепи 2-3 также работа электрического поля положительна, а работа источника отрицательна, поэтому:

.

На третьем участке цепи 3-1 работа источника положительна, поэтому:

.

Сложим правые и левые части трех последних уравнений, предварительно домножив первое уравнение на «1». Тогда все потенциалы сократятся, в результате получим:

.

Последнее уравнение совпадает с формулировкой второго правила Кирхгофа (2.20) с учетом всех замечаний, сделанных по поводу знаков токов и ЭДС (выражения типа можно формально рассматривать как падения напряжений на внутренних сопротивлениях).

Отметим, что второе правило Кирхгофа, являясь следствием закона Ома для неоднородного участка цепи, по сути дела является следствием закона сохранения энергии.

Правила Кирхгофа применимы и в том случае, когда в цепь включены неомические, т.е. не подчиняющиеся закону Ома () элементы. Такие элементы еще называются нелинейными, поскольку зависимость напряжения на них от силы тока нелинейная. Нелинейными являются, например, большинство радиотехнических элементов: диоды, транзисторы, электронные лампы. Расчеты ведутся также, только падение напряжения на нелинейном элементе следует обозначать не, а. Второе правило Кирхгофа при этом имеет вид:.

Рассмотрим примеры.

Пример 2.9. Параллельное соединение источников тока. В схеме на рис. 2.15 1=14 В, Ом,2=12 В, Ом,Ом. Определить токи во всех ветвях.

Решение. Произвольно расставим токи во всех ветвях (рис. 2.15).

В цепи имеется два узла: В и Е. Запишем первое правило Кирхгофа для узла В (для узла Е получится то же самое уравнение):

.

Так как в задаче три неизвестных тока, необходимо три уравнения. Для этого достаточно рассмотреть какие-либо два замкнутых контура цепи и записать для них второе правило Кирхгофа.

Контур АВЕFA: .

Контур АВСDEFA: .

Отметим, что положительное направление обхода контуров задает последовательность букв, которыми они обозначены. Например, в контуре АВЕFA положительное направление обхода – по часовой стрелке. Напомним, что ЭДС первого источника взята со знаком «+», так как при движении вдоль контура по часовой стрелке он проходится от клеммы «» к клемме «+». ЭДС второго источника взята со знаком минус, так как при движении по часовой стрелке он проходится от клеммы «+» к клемме «». В правой части уравнения оба тока взяты знаком «+», поскольку они текут вдоль положительного направления обхода - по часовой стрелке. Такие же правила использованы и для контура АВСDEFA.

Перед решением полученной систему из трех уравнений удобно подставить в них известные величины:

В результате решения системы получаем ответ: А,А,А. Так как все токи получились положительными, их направления были случайно указаны верно.

Анализируя полученный результат, можно сделать вывод, что первый источник питает не только нагрузку , но и заряжает второй источник. Второй источник играет роль «паразита». Однако такая схема все-таки иногда используется на практике. Например, в системах электрического питания автомобилей роль первого источника играет генератор постоянного тока, а роль второго – аккумулятор. Если на питание нагрузки расходуются небольшие токи (общее сопротивление внешней цепи велико), то генератор не только питает нагрузку, но и еще подзаряжает аккумулятор. При увеличении тока, потребляемого нагрузкой, направление тока(рис. 2.15) может изменится, и аккумулятор начинает разряжаться, работая синхронно с генератором. Допустим, что к нагрузке(рис. 2.15) параллельно подключена еще точно такая же нагрузка. Тогда сопротивление внешней цепи становится равнымОм. Третье уравнение системы изменится, и решение становится другим:А,А,А. Отрицательное значение второго тока и свидетельствует о том, что он теперь направлен в сторону, противоположную указанной на рис. 2.15, т.е. разряжается.