Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

физика

.rtf
Скачиваний:
27
Добавлен:
03.05.2015
Размер:
170.57 Кб
Скачать

Роль электротехники в моей будущей профессии

Сегодня существует множество профессий ,которые тем или иным образом связанны с электричеством. Все потому что можество современных профессий связана с техникой,каторая требует особых навыков в электрике.Мы можем запросто сделать опыт в любой сфере.

Электротехника-это наука об примененикой электрической энергии для практической цели,этой области техники в которую входят производства передачи,распределения и многообразное применение электрической энергии. Особенность ее заключается в том,что ее легко преобразовать в другие виды энергии и наоборот.

Невозможно представить себе современный станок или какой-либо прибор для испатыния механических свойств металлов без электротехники,защитной и контрольной аппаратуры.

Различают привод главного движения,привод подачи,привод быстрых перемещений и так далее. В электроприводе применяют двигатели переменного трехфазного тока с короткозамкнутым ротором,который соединяется непосредственно или через временную подачу с коробкой подач.В состав электропривода кроме электродвигателя и исполнительных органов станка,с которыми соединен электродвигатель ,входят аппаратура управления двигателем,систем электроизмерительных приборов,электрические цепи,аппаратура защиты и другие.Каждая часть станка взаимодействует друг с другом.Каждой части нужно электричество,чтоб оно могло запустить свое движение.

Так же электротехника связана с моей будущей профессией "Станочник".

Станочник-профессия,необходимая во всех отрослях экономики,поэтому постоянно сохраняется высокий уровень потребности в этих специальностях. Говорят,профессия станочника похожа на матрешку. Под названием "Станочник в металлообработке" скрывается на самом деле две профессии:" Станочник широкого профиля"и "Оператор станков с ЧПУ"(с числовым программным управлением).В каждую из них вложены еще по 4 самых массовых профессии металлообработки:токарь,фрезеровщик,сверловщик,шлифовщик. Разница между станочником и оператором только в одном:станочник работает на станках с ручным управлениям,а оператор-с программным.Такой специалист особенно ценен на крупных металлообрабатывающих производствах,где необходимы знания по управлению станками.Там,где производство автоматизированно,он будет востребован как оператор станков с ЧПУ,может также работать и оператором станков-автоматов и полуавтоматов(они в отличии от станков с ЧПУ могут выполнять тльку одну операцию или одно изделие-болт,гайку,винт и т.п).Благодаря научно-техническому прогрессу в труде рабочего-станочника происходят изменения. Они касаются и техники,и обрабатываемых материалов,и режущих инструментов.Управление соевременными станками изменяет содержание труда станочника,увеличивая сдержание труда станочника,увеличивая его интелектуальные функции. Чтобы стать настоящим мастером-станочником,нужно обладать широкими знаниями в точных науках,в электротехнике,черчении.Невозможно правильно подобрать материал для изготовления детали без знания материаловедения.Качественное изделие не изготовить,если не разбираешься в механике,электротехнике,не умеешь пользоваться измерительными приборами и инструментами,не можешь правильно отладить станок,не знаешь принципы обработки деталей.Для квалифицированного станочника все эти знания и навыки не представляют сложно.

Сегодня данная профессия включает в себя токарные, фрезерные, сверлильные, шлифовальные работы и работы на станках с ЧПУ, а раньше, сотни лет до нашей эры только зародилось токарное дело. Уже тогда люди стремились к прекрасному и вытачивали первые детали – изделия из кости и дерева и дарили их своим прекрасным девушкам и женам. Это были красивые резные палочки, вазочки.

Токарное дело так захватывало людей, что даже короли вставали за токарный станок и точили различные детали. В числе их были:король Людовик Х IV, прусский король Фридрих Вильгельм I. Пётр Iпроводил много времени в токарной мастерской и одним из его подарков прусскому королю был кубок, выточенный собственными руками.

Востребованность в станочниках на заводах нашей страны настолько велика, что, даже из маленьких городков, где готовят станочников, приглашают на работу в города миллионники, их там не хватает, и всегда предложат высокооплачиваемое рабочее место.

В промышленности электротехнической области предметы труда это, прежде всего, проводниковые, магнитные, различные электроизоляционные материалы, и изготовленные из них изделия, такие как провода, например кабели, единицы сборочных деталей электрических аппаратов и машин и.т.п. Для рабочих электротехнических профессий, занимающихся ремонтом и эксплуатацией электроустановок, их предметами труда приходятся электрические машины, аппараты, приборы, которые представляют собой продукты труда, в свою очередь произведенные на крупных предприятиях электротехнической промышленности. Сам человек совершенствует предметы труда при помощи средств труда – станков, машин, инструментов и. т. п. Широко используются в качестве средств труда различные металлорежущие станки и машины, оборудованные для обработки материалов на предприятиях электротехнической промышленности, а также их точения, резания, сверления и. т. д., изготовление обмоток электромашин и трансформаторов, приспособлений для выполнения слесарных и электромонтажных работ, инструментов, оборудования для сварочных работ, различные контрольно-измерительных приборов и испытательных стендов электротехнической промышленности можно выделить: кабельное производство, тяжелое, среднее и мелкое электромашиностроение, производство аккумуляторов, трансформаторостроение, электроизоляторное производство, электротермического оборудования, светотехнической продукции, преобразовательной техники, электрооборудования для транспорта, высоковольтное и низковольтное аппаратостроение. Научно технический прогресс постоянно меняет структуру электротехнической промышленности, так как возникают новые виды производства, специализация и разделение труда.Электротехническая промышленность благополучно и успешно решает задачи по увеличению роста производства турбогенераторов высокой мощности и электрооборудования на напряжение 1150 кВ переменного тока 1500 кВ постоянного тока. Специализированное внимание уделяется производству электрооборудования, обладающим высоким коэффициентом полезного действия и потребляющего наименьшего расхода цветных металлов и множество других дефицитных материалов. Также расширяется выпуск производства современных и экономических источников тока, проводов, источников света, электродвигателей, рассчитанных на наиболее длительный срок службы.

Историческая справка. Возникновению Э. предшествовал длительный период накопления знаний об электричестве (См. Электричество) и Магнетизме, в течение которого были сделаны лишь отдельные попытки применения электричества в медицине, а также для передачи сигналов. В 17—18 вв. исследованию природы электрических явлений были посвящены труды М. В. Ломоносова. Т. В. Рихмана, Б. Франклина, Ш. О. Кулона, П. Дивиша и др. Для становления Э. решающее значение имело появление первого источника непрерывного тока — вольтова столба (См. Вольтов столб) (А. Вольта, 1800), а затем более совершенных гальванических элементов, что позволило в 1-й трети 19 в. провести многочисленные исследования химических, тепловых, световых и магнитных явлений, вызываемых электрическим током (труды В. В. Петрова, X. К. Эрстеда, Д. Ф. Араго, М. Фарадея (См. Фарадей), Дж. Генри, А. М. Ампера, Г. С. Ома и др.). В этот период были заложены основы электродинамики (См. Электродинамика), открыт важнейший закон электрической цепи — Ома закон. Среди попыток практического использования результатов этих достижений наиболее значительными были работы в телеграфии (См. Телеграфия) (электромагнитный телеграф П. Л. Шиллинга, 1832), в военном деле (гальваноударные морские мины Б. С. Якоби, 1840-е гг.), в области электрических измерений (индикатор электрического тока, т. н. мультипликатор, австрийского учёного И. К. Швейгера, 1820). Открытие электромагнитной индукции (См. Электромагнитная индукция) (1831—32) предопределило появление электрических машин (См. Электрическая машина) — двигателей и генераторов. Поскольку все первые потребители электроэнергии использовали постоянный ток (как наиболее изученный), первые электрические машины были Постоянного тока машинами. Исторически электродвигатели стали создаваться раньше электромашинных генераторов, т. к. в 1-й трети 19 в. гальванические элементы как источники тока к большей или меньшей мере удовлетворяли требованиям практики. Период совершенствования конструкции электродвигателя — от лабораторных приборов, демонстрировавших возможность превращения электрической энергии в механическую (установка Фарадея, 1821), до машин промышленного типа — охватывает приблизительно 50 лет. В первых электродвигателях подвижная часть совершала возвратно-поступательное или качательное движение, а момент на валу двигателя был пульсирующим (например, в двигателе Генри). Начиная с середины 30-х гг. 19 в. стали строиться двигатели с вращающимся якорем (См. Якорь). Таким электродвигателем, получившим практическое применение, был двигатель, разработанный Якоби (1834--38). Испытание этого двигателя, приводившего в движение «электрический бот», показало, с одной стороны, принципиальную возможность его практического применения, а с другой — необходимость создания более экономичного по сравнению с гальваническими элементами источника электроэнергии. Таким источником стал электромашинный генератор, прообразом которого была униполярная машина Фарадея (1831). Первыми практически пригодными электромашинными генераторами были магнитоэлектрические генераторы, в которых магнитное поле создавалось постоянными магнитами, а якорями служили массивные индуктивные катушки (Якоби, 1842). В 1851 немецкий учёный В. Зинстеден предложил заменить постоянные магниты Электромагнитами, катушки которых питались от самостоятельных магнитоэлектрических генераторов. Дальнейшее совершенствование конструкции электромашинного генератора связано с использованием для возбуждения обмотки электромагнита тока самого генератора. Такие генераторы с Самовозбуждением были предложены почти одновременно датским учёным С. Хиортом (1854), английскими инженерами К. и С. Варли (1867), Л. Йедликом, Ч. Уитстоном, Э. В. Сименсом. Промышленное производство генераторов было начато в 1870 в Париже после того, как З. Т. Грамм впервые применил в генераторе с самовозбуждением кольцевой шихтованный якорь, принципиальная конструкция которого была предложена для электродвигателя в 1860 А. Пачинотти. Генератор Грамма работал не только в генераторном, но и в двигательном режиме, что положило начало практическому внедрению принципа обратимости электрических машин (открытому Э. X. Ленцем, 1832—38) и позволило значительно расширить область использования электрических машин. Последующее совершенствование машин постоянного тока шло по пути улучшения их конструктивных элементов — замена кольцевого якоря барабанным (Ф. Хёфнер-Альтенек, 1873), усовершенствование шихтованных якорей (американский изобретатель Х. Максим, 1880), введение компенсационной обмотки (1884), дополнительных полюсов (1885) и др. К 80-м гг. 19 в. электрические машины постоянного тока приобрели основные конструктивные черты современных машин. Их совершенствованию способствовало открытие закона о направлении индукционных токов (см. Ленца правило), обнаружение и исследование противоэдс (Якоби, 1840) и реакции якоря (Ленц, 1847), разработка методов расчёта электрических цепей (Г. Р. Кирхгоф, 1847) и магнитных цепей (английский учёный Дж. Гопкинсон, нач. 80-х гг.), изучение магнитных свойств железа (А. Г. Столетов, 1871) и др. К концу 70-х гг. относятся работы Дж. К. Максвелла, сформулировавшего уравнения (см. Максвелла уравнения), являющиеся основой современного учения об электромагнитном поле (См. Электромагнитное поле).

Наряду с электромашинными генераторами продолжали совершенствоваться химические источники тока. Значительным шагом в этом направлении было изобретение свинцового аккумулятора (См. Свинцовый аккумулятор) (французский физик Г. Планте, 1859). Усовершенствованная конструкция этого аккумулятора к 80-м гг. уже имела все основные элементы современных аккумуляторов.

Создание надёжных источников тока сделало возможным удовлетворение возросших потребностей в электрической энергии для практических целей. Дальнейшее развитие Э. связано с возникновением электротехнической промышленности (См. Электротехническая промышленность) и массовым распространением электрического освещения, которое в 50—70-х гг. 19 в. заменило газовое. Идея применения электрической энергии для освещения была высказана Петровым в 1802 после открытия дуги электрической (См. Дуга электрическая). Первыми электрическими источниками света были разнообразные дуговые угольные лампы (См. Дуговая угольная лампа), среди которых наиболее дешёвой и простой была «свеча Яблочкова» (П. Н. Яблочков, 1876). В 1870—75 А. Н. Лодыгин разработал несколько типов ламп накаливания, усовершенствованных позднее Т. А. Эдисоном и получивших преимущественное распространение к 90 м гг. 19 в. Достижения в создании и применении электрических источников света оказали существенное влияние на становление и развитие светотехники (См. Светотехника). С распространением электрического освещения связано создание электроэнергетических систем. Уже в первых осветительных устройствах Яблочкова имелись все основные элементы энергосистем: первичный двигатель, генератор, линия электропередачи, трансформатор, приёмник энергии.

Начало применению электроэнергии для технологических целей положили ещё работы Якоби (1838), предложившего использовать электрический ток для получения металлических копий и для нанесения металлических покрытий (см. Гальванотехника).

Но расширение области практического использования электрической энергии стало возможно лишь в 70—80-е гг. 19 в. с решением проблемы передачи электроэнергии на расстояние. В 1874 Ф. А. Пироцкий пришёл к выводу об экономической целесообразности производства электроэнергии в местах, где имеются дешёвые топливные или гидроэнергетические ресурсы, с последующей передачей её к потребителю. В 1880—81 Д. А. Лачинов и М. Депре независимо друг от друга предложили для уменьшения потерь электроэнергии в линии электропередачи (См. Линия электропередачи) (ЛЭП) использовать ток высокого напряжения. Первая линия электропередачи на постоянном токе была построена Депре в 1882 между городами Мисбахом и Мюнхеном (длина линии 57 км, напряжение в ней 1.5—2 кв). Однако попытки осуществить электропередачу на постоянном токе оказались неэффективными, т. к., с одной стороны, технические возможности получения постоянного тока высокого напряжения были ограничены, а с другой — было затруднено его потребление. Поэтому наряду с использованием для передачи электроэнергии постоянного тока велись работы по применению в тех же целях однофазного переменного тока (См. Переменный ток), напряжение которого можно было изменять (повышать и понижать) с помощью однофазного трансформатора. Создание промышленного типа такого трансформатора (О. Блати, М. Дери, К. Циперновский, 1885, и др.) по существу решило проблему передачи электроэнергии. Однако широкое распространение однофазного переменного тока в промышленности было невозможно из-за того, что однофазные электродвигатели не удовлетворяли требованиям промышленного электропривода, и поэтому применение однофазного переменного тока ограничивалось лишь установками электрического освещения.

В 70—80-е гг. 19 в. электроэнергию начали использовать в технологических процессах: при получении алюминия, меди, цинка, высококачественных сталей: для резки и сварки металлов; упрочнения деталей при термической обработке (См. Термическая обработка) и т. д. В 1878 Сименс создал промышленную конструкцию электроплавильной печи. Методы дуговой электросварки (См. Электросварка) были предложены Н. Н. Бенардосом (1885) и Н. Г. Славяновым (1891).

К концу 70-х гг. относятся также первые попытки использования электроэнергии на транспорте, когда Пироцкий провёл испытания вагона, на котором был установлен электрический тяговый двигатель. В 1879 Сименс построил опытную электрическую дорогу в Берлине. В 80-е гг. трамвайные линии были открыты во многих городах Западной Европы, а затем в Америке (США). В России первый трамвай был пущен в Киеве в 1892. В 90-е гг. электрическая тяга была применена и на подземных железных дорогах (в 1890 в Лондонском метрополитене, в 1896 — в Будапештском), а затем на магистральных железных дорогах.

В конце 19 в. промышленное использование электроэнергии превратилось в важнейшую комплексную технико-экономическую проблему — наряду с экономичной электропередачей необходимо было иметь электродвигатель, удовлетворяющий требованиям электропривода. Решение этой проблемы стало возможным после создания многофазных, в частности трёхфазных, систем (см. Трёхфазная цепь) переменного тока. Над этой проблемой работали многие инженеры и учёные (Н. Тесла, американский учёный Ч. Брэдли, немецкий инженер Ф. Хазельвандер и др.), но комплексное решение предложил в конце 80-х гг. М. О. Доливо-Добровольский, который разработал ряд промышленных конструкций трёхфазных асинхронных двигателей (См. Асинхронный электродвигатель), трёхфазных трансформаторов, и в 1891 построил трёхфазную линию электропередачи Лауфен — Франкфурт (длина линии 170 км).

Современное состояние Э. Практическое применение трёхфазных систем положило начало современному этапу развития Э., который характеризуется растущей электрификацией промышленности, сельского хозяйства, транспорта, сферы быта и др. Увеличение потребления электроэнергии обусловило строительство мощных электростанций, электрических сетей, создание новых и расширение действующих электроэнергетических систем. Строительство мощных ЛЭП высокого напряжения привело к разработке разнообразного высоковольтною оборудования, электроизоляционных материалов, средств электроизмерительной и преобразовательной техники и т. д., а также стимулировало улучшение конструкций электрических машин и аппаратов, разработку методов анализа процессов в цепях переменного тока (работы Ч. П. Штейнмеца и др.). Совершенствование электротехнических устройств способствовало формированию таких научных дисциплин, как высоких напряжений техники (См. Высоких напряжений техника), теория электрических цепей (См. Электрическая цепь), теория электрических машин, электропривод и др. Успехи Э. оказали существенное влияние на развитие радиотехники (См. Радиотехника) и электроники (См. Электроника), телемеханики (См. Телемеханика) и автоматики (См. Автоматика), а также вычислительной техники (См. Вычислительная техника) и кибернетики (См. Кибернетика).

Один из важных разделов Э. — электромеханика охватывает вопросы преобразования энергии, практическое решение которых на широкой научной основе потребовало разработки специальных методов, связанных с анализом и описанием процессов, протекающих именно в электротехнических устройствах. Математическое описание таких процессов основано на решении уравнений Максвелла. При этом их дополняют уравнениями, описывающими конкретный процесс, или используют Вариационные принципы механики. Так, на основе Возможных перемещений принципа разработаны различные формализованные методы, среди которых наибольшее практическое применение при исследовании процессов, протекающих в электрических системах, машинах и аппаратах, находят методы: исключения уравнений с периодическими коэффициентами для взаимно перемещающихся цепей; выбора наиболее целесообразных систем обобщённых координат (См. Обобщённые координаты), анализа переходных процессов (См. Переходные процессы) в электрических цепях; определения устойчивости работы нерегулируемых и регулируемых электрических машин, связанных линиями электропередачи, и др. Значительный вклад в развитие этих методов сделали А. А. Горев, П. С. Жданов, С. А. Лебедев, американский учёный Р. X. Парк, английские учёные О. Хевисайд, Г. Крон и др. Их труды легли в основу математической теории электрических машин и открыли возможность для применения сложного математического аппарата (тензорного исчисления (См. Тензорное исчисление), графов теории (См. Графов теория), теории матриц, операционного исчисления (См. Операционное исчисление)) при решении разнообразных прикладных задач, в частности связанных с изучением сложных электромеханических систем, переходных электромеханических и электромагнитных процессов, Использование тензорного исчисления привело к появлению такого приёма исследования, как диакоптика, при котором данные, характеризующие всю сложную систему (например, электрическую цепь, содержащую сотни и тысячи узлов и ветвей), можно получать, рассматривая поведение её отдельных частей. Особенно эффективным стало употребление формализованных методов в сочетании с машинным проектированием, являющимся одним из перспективных направлений при рассмотрении современных задач электромеханики (в частности, задач синтеза, решаемых на основе алгебры логики (См. Алгебра логики) и теории направленных графов). Формализованные методы используют при исследовании многих проблемных задач Э., например таких, как изучение нелинейных цепей (а также возникающих в них гармонических и субгармонических колебаний), проводимое на основе методов анализа и синтеза, разработанных ранее для линейных цепей и трудах А. М. Ляпунова, Н. М. Крылова, Н. Н. Боголюбова, Л. И. Мандельштама, Н. Д. Папалекси, А. А. Андронова и др. Важное направление современной Э. — разработка теоретических и экспериментальных методов исследований, основывающихся на подобия теории (См. Подобия теория), аналоговом и физическом моделировании (См. Моделирование), теории планирования эксперимента и позволяющих решать ряд принципиальных научно-технических проблем Э. К ним, в частности, относятся вопросы совершенствования существующих способов передачи электроэнергии и разработка новых. В круг этих вопросов входят: исследования процессов, протекающих в линиях электропередачи и преобразовательных устройствах; разработка и совершенствование управляемых элементов коммутационной аппаратуры; создание полупроводниковых преобразователей, способных эффективно работать в сочетании с электромеханическими устройствами (см. Преобразовательная техника), а также изучение возможности использования гиперпроводников и сверхпроводников в линиях электропередачи.

Большое практическое значение имеет разработка способов оптимального управления сложными электроэнергетическими системами и повышения их надёжности. Решение этих задач основывается на использовании методов моделирования и вероятности теории (См. Вероятностей теория). Необходимое условие для повышения устойчивости и надёжности работы электроэнергетических систем — создание мощных симметрирующих устройств, статических регуляторов и другой аппаратуры, обеспечивающей оптимальные режимы работы систем.

Важные направления Э. — создание сложных электромагнитных полей с заданными свойствами, требующее разработки методов расчёта и моделирования электрических и магнитных полей в ферромагнитных, плазменных и других нелинейных и анизотропных средах, а также исследование и определение оптимальной конфигурации систем (в частности, сверхпроводящих), создающих сильные магнитные поля; разработка теории управления электромагнитными полями и методов синтеза систем, создающих эти поля.

Значительный интерес представляет изучение импульсных полей высокой интенсивности (см. Импульсная техника высоких напряжении), в т. ч. разработка методов анализа взаимодействия таких полей с веществом, исследование тепловых и электродинамических процессов в электроэнергетических устройствах предельных параметров. Результаты этих работ находят применение при создании магнитопроводов для сверхмощных трансформаторов электрических (См. Трансформатор электрический) и реакторов электрических (См. Реактор электрический).

Теоретические и экспериментальные методы Э. нашли своё развитие в ряде др. отраслей науки и техники, связанных, в частности, с исследованием свойств вещества (полупроводников, плазмы), с разработкой и созданием средств ядерной и лазерной техники, изучением явлений микромира и жизнедеятельности живых организмов, освоением космического пространства.

Достижения Э. используются во всех сферах практической деятельности человека — в промышленности, сельском хозяйстве, медицине, быту и т. д. Электротехническая промышленность выпускает машины и аппараты для производства, передачи, преобразования, распределения и потребления электроэнергии; разнообразную электротехническую аппаратуру и технологическое оборудование; электроизмерительные приборы и средства электросвязи: регулирующую, контролирующую и управляющую аппаратуру для систем автоматического управления; электробытовые приборы и машины, медицинское и научное оборудование и др.

Научные учреждения и организации, периодические издания. Большую роль в развитии Э. играют международные организации: Международная электротехническая комиссия (МЭК), Международная конференция по большим системам (СИГРЭ), Международная конференция по применению вычислительных методов в электротехнике (ПИИСИСИ), Международная организация по электротехнике (Интерэлектро), Всемирная электротехническая конференция (ВЭлК). Активное участие в работе этих организаций принимают советские учёные. В СССР научные исследования по Э. проводятся во Всесоюзном электротехническом институте им. В, И. Ленина (ВЭИ, Москва), Государственном научно-исследовательском энергетическом институте им. Г. М. Кржижановского (ЭНИН, Москва), Всесоюзном НИИ электромеханики (ВНИИЭМ, Москва), Всесоюзном НИИ электропривода (ВНИИЭ, Москва), Всесоюзном НИИ источников тока (ВНИИТ, Москва), Московском энергетическом институте (МЭИ), Ленинградском электротехническом институте (ЛЭТИ), во Всесоюзном НИИ электромашиностроения (Ленинград), НИИ постоянного тока (НИИПТ, Ленинград), а также во многих научных центрах других городов Советского Союза.Краткое описание: Несмотря на то, что профессия станочника относится к разряду малоизвестных занятий, её незаменимость для общества не вызывает сомнения. Основные обязанности включают в себя создание деталей из различных материалов для ремонта производственных станков и других механизмов. Разработка деталей предоставляется в форме специальных чертежей, а корректность создания проверяется оптическими приборами.

История профессии: Развитие профессии приходится на рассвет индустриальной революции середины прошлого века, когда основным инструментом для работы являлось промышленное оборудование. На сегодняшний день профессия станочника все ещё удерживает свои позиции и с успехом применяется на производстве.…

Социальная значимость профессии в обществе: Век технического прогресса значительно снизил популярность профессии станочника, отдав первенство компьютерным технологиям. Однако, несмотря на это, промышленная сфера по-прежнему нуждается в квалифицированных специалистах, способных создать индивидуальную деталь для различного оборудования. Используя токарные, фрезерные, сверлильные или шлифовальные станки, мастер в ручном режиме следит за соблюдением всех параметров изделия и гарантирует его высокое качество.