Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Физиология сердечно

.docx
Скачиваний:
34
Добавлен:
09.05.2015
Размер:
50.37 Кб
Скачать

Физиология сердечно-сосудистой системы.

Система кровообращения состоит из сердца, сосудов (кровеносных и лимфатических), органов депо крови, механизмов регуляции системы кровообращения. Основная ее функция заключается в обеспечении постоянного движения крови по сосудам.

Кровь в организме человека циркулирует по двум кругам кровообращения.

Большой круг кровообращения начинается аортой, которая отходит от левого желудочка, и заканчивается верхней и нижней полыми венами, впадающими в правое предсердие. Аорта дает начало крупным, средним и мелким артериям. Артерии переходят в артериолы, которые заканчиваются капиллярами. Капилляры широкой сетью пронизывают все органы и ткани организма. В капиллярах кровь отдает тканям кислород и питательные вещества, а из них в кровь поступают продукты обмена веществ, в том числе и углекислый газ. Капилляры переходят в венулы, кровь из которых попадает в мелкие, средние и крупные вены. Кровь от верхней части туловища поступает в верхнюю полую вену, от нижней – в нижнюю полую вену. Обе эти вены впадают в правое предсердие, где заканчивается большой круг кровообращения.

Малый круг кровообращения (легочный) начинается легочным стволом, который отходит от правого желудочка и несет в легкие венозную кровь. Легочный ствол разветвляется на две ветви, идущие к левому и правому легкому. В легких легочные артерии делятся на более мелкие артерии, артериолы и капилляры. В капиллярах кровь отдает углекислый газ и обогащается кислородом. Легочные капилляры переходят в венулы, которые затем образуют вены. По четырем легочным венам артериальная кровь поступает в левое предсердие.

Регуляция деятельности сердца.

Сердце обладает автоматизмом, то есть оно сокращается под влиянием импульсов, возникающих в его специальной ткани. Однако в целостном организме животного и человека работа сердца регулируется за счет нейрогуморальных воздействий, изменяющих интенсивность сокращений сердца и приспосабливающих его деятельность к потребностям организма и условиям существования.

Нервная регуляция.

Сердце, как и все внутренние органы, иннервируется вегетативной нервной системой.

Парасимпатические нервы являются волокнами блуждающего нерва. Центральные нейроны симпатических нервов залегают в боковых рогах спинного мозга на уровне I-IV грудных позвонков, отростки этих нейронов направляются в сердце, где иннервируют миокард желудочков и предсердий, образования проводящей системы.

Центры нервов, иннервирующих сердце, всегда находятся в состоянии умеренного возбуждения. За счет этого к сердцу постоянно поступают нервные импульсы. Тонус нейронов поддерживается за счет импульсов, поступающих в ЦНС от рецепторов, заложенных в сосудистой системе. Эти рецепторы располагаются в виде скопления клеток и носят название рефлексогенной зоны сердечно-сосудистой системы. Наиболее важные рефлексогенные зоны располагаются в области каротидного синуса и в области дуги аорты.

Блуждающие и симпатические нервы оказывают на деятельность сердца противоположное влияние по 5 направлениям:

  1. хронотропное (изменяет частоту сердечных сокращений);

  2. инотропное (изменяет силу сердечных сокращений);

  3. батмотропное (оказывает влияние на возбудимость);

  4. дромотропное (изменяет способность к проводимости);

  5. тонотропное (регулирует тонус и интенсивность обменных процессов).

Парасимпатическая нервная система оказывает отрицательное влияние по всем пяти направлениям, а симпатическая нервная система – положительное.

Таким образом, при возбуждении блуждающих нервов происходит уменьшение частоты, силы сердечных сокращений, уменьшение возбудимости и проводимости миокарда, снижает интенсивность обменных процессов в сердечной мышце.

При возбуждении симпатических нервов происходит увеличение частоты, силы сердечных сокращений, увеличение возбудимости и проводимости миокарда, стимуляция обменных процессов.

Влияние коры головного мозга на деятельность сердца.

КГМ регулирует и корригирует деятельность сердца через блуждающие и симпатические нервы. Доказательством влияния КГМ на деятельность сердца является возможность образования условных рефлексов, а также изменения в деятельности сердца, сопровождающие различные эмоциональные состояния (волнение, страх, гнев, злость, радость).

Гуморальная регуляция деятельности сердца.

Факторы, осуществляющие гуморальную регуляцию деятельности сердца, делятся на 2 группы: вещества системного действия и вещества местного действия.

К веществам системного действия относятся электролиты и гормоны.

Избыток ионов калия в крови приводит к замедлению ритма сердца, уменьшению силы сердечных сокращений, торможению распространения возбуждения по проводящей системе сердца, снижению возбудимости сердечной мышцы.

Избыток ионов кальция в крови оказывает на деятельность сердца противоположное влияние: увеличивается ритм сердца и сила его сокращений, повышается скорость распространения возбуждения по проводящей системе сердца и нарастает возбудимость сердечной мышцы. Характер действия ионов калия на сердце сходен с эффектом возбуждения блуждающих нервов, а действие ионов кальция – с эффектом раздражения симпатических нервов

Адреналин увеличивает частоту и силу сердечных сокращений, улучшает коронарный кровоток, тем самым повышая интенсивность обменных процессов в сердечной мышце.

Тироксин вырабатывается в щитовидной железе и оказывает стимулирующее влияние на работу сердца, обменные процессы, повышает чувствительность миокарда к адреналину.

Минералокортикоиды (альдостерон) улучшают реабсорбцию (обратное всасывание) ионов натрия и выведение ионов калия из организма.

Глюкагон повышает содержание глюкозы в крови за счет расщепления гликогена, что оказывает положительный инотропный эффект.

Вещества местного действия действуют в том месте, где образовались. К ним относят:

  1. Медиаторы – ацетилхолин и норадреналин, которые оказывают противоположные влияния на сердце.

Действие АХ неотделимо от функций парасимпатических нервов, так как он синтезируется в их окончаниях. АХ уменьшает возбудимость сердечной мышцы и силу ее сокращений. Норадреналин оказывает на сердце влияние, аналогичное воздействию симпатических нервов..

  1. Тканевые гормоны – кинины – вещества, обладающие высокой биологической активностью, но быстро подвергающиеся разрушению, они действуют на гладкомышечные клетки сосудов.

  2. Простагландины – оказывают разнообразное действие на сердце в зависимости от вида и концентрации

  3. Метаболиты – улучшают коронарный кровоток в сердечной мышце.

Гуморальная регуляция обеспечивает более длительное приспособление деятельности сердца к потребностям организма.

Кровеносные сосуды.

По особенностям функционирования выделяют 5 типов кровеносных сосудов:

  1. Магистральные – наиболее крупные артерии, в которых ритмически пульсирующий кровоток превращается в более равномерный и плавный. Это сглаживает резкие колебания давления, что способствует бесперебойному снабжению кровью органов и тканей. Стенки этих сосудов содержат мало гладкомышечных элементов и много эластических волокон.

  2. Резистивные (сосуды сопротивления) – включают в себя прекапиллярные (мелкие артерии, артериолы) и посткапиллярные (венулы и мелкие вены) сосуды сопротивления. Соотношение между тонусом пре- и посткапиллярных сосудов определяет уровень гидростатического давления в капиллярах, величину фильтрационного давления и интенсивность обмена жидкости.

  3. Истинные капилляры (обменные сосуды) – важнейший отдел ССС. Через тонкие стенки капилляров происходит обмен между кровью и тканями.

  4. Емкостные сосуды – венозный отдел ССС. Они вмещают около 70-80% всей крови.

  5. Шунтирующие сосуды – артериовенозные анастомозы, обеспечивающие прямую связь между мелкими артериями и венами в обход капиллярного ложа.

Основной гемодинамический закон: количество крови, протекающей в единицу времени через кровеносную систему тем больше, чем больше разность давления в ее артериальном и венозном концах и чем меньше сопротивление току крови.

Сердце во время систолы выбрасывает кровь в сосуды, эластическая стенка которых растягивается. Во время диастолы стенка возвращается в исходное состояние, так как выброса крови нет. В результате происходит превращение энергии растяжения в кинетическую энергию, которая обеспечивает дальнейшее движение крови по сосудам.

Особенности кровотока в венах.

Движению крови по венам способствует ряд факторов:

  • Работа сердца создает разность давления крови в артериальной системе и правом предсердии. Это обеспечивает венозный возврат крови к сердцу. Если в начале артериального русла давление крови равно 140 мм рт.ст., то в венулах оно составляет 10-15 мм рт.ст.

  • Наличие в венах клапанов способствует движению крови в одном направлении – к сердцу.

  • Чередование сокращений и расслаблений скелетных мышц является важным фактором, способствующим движению крови по венам. При сокращении мышц тонкие стенки вен сжимаются, и кровь продвигается по направлению к сердцу. Расслабление скелетных мышц способствует поступлению крови из артериальной системы в вены. Такое нагнетающее действие мышц получило название мышечного насоса, который является помощником основного насоса – сердца.

  • Отрицательное внутригрудное давление, особенно в фазу вдоха, способствует венозному возврату крови к сердцу.

 

Гладкомышечные элементы стенки кровеносного сосуда постоянно находятся в состоянии умеренного напряжения – сосудистого тонуса. Существует три механизма регуляции сосудистого тонуса:

  1. ауторегуляция

  2. нервная регуляция

  3. гуморальная регуляция.

Ауторегуляция обеспечивает изменение тонуса гладкомышечных клеток под влиянием местного возбуждения. Миогенная регуляция связана с изменением состояния гладкомышечных клеток сосудов в зависимости от степени их растяжения – эффект Остроумова-Бейлиса. Гладкомышечные клетки стенки сосудов при повышении кровяного давления отвечают сокращением на растяжение и расслаблением – на понижение давления в сосудах. Значение: поддержание на постоянном уровне объема крови, поступающей к органу (наиболее выражен механизм в почках, печени, легких, головном мозге).

Нервная регуляция сосудистого тонуса осуществляется вегетативной нервной системой, которая оказывает сосудосуживающее и сосудорасширяющее действие.

Симпатические нервы являются вазоконстрикторами (сужают сосуды) для сосудов кожи, слизистых оболочек, желудочно-кишечного тракта и вазодилататорами (расширяют сосуды) для сосудов головного мозга, легких, сердца и работающих мышц. Парасимпатический отдел нервной системы оказывает на сосуды расширяющее действие.

Гуморальная регуляция осуществляется веществами системного и местного действия. К веществам системного действия относятся ионы кальция, калия, натрия, гормоны. Ионы кальция вызывают сужение сосудов, ионы калия оказывают расширяющее действие.

Действие гормонов на тонус сосудов:

  1. вазопрессин – повышает тонус гладкомышечных клеток артериол, вызывая сужение сосудов;

  2. адреналин оказывает одновременно и суживающее и расширяющее действие, воздействуя на альфа1-адренорецепторы и бета1-адренорецепторы, поэтому при незначительных концентрациях адреналина происходит расширение кровеносных сосудов, а при высоких – сужение;

  3. тироксин – стимулирует энергетические процессы и вызывает сужение кровеносных сосудов;

  4. ренин – вырабатывается клетками юкстагломерулярного аппарата и поступает в кровоток, оказывая воздействие на белок ангиотензиноген, который переходит в ангиотезин II, вызывающий сужение сосудов.

Метаболиты (углекислый газ, пировиноградная кислота, молочная кислота, ионы водорода) воздействуют на хеморецепторы сердечно-сосудистой системы, приводя к рефлекторному сужению просвета сосудов.

К веществам местного воздействия относятся:

  1. медиаторы симпатической нервной системы – сосудосуживающее действие, парасимпатической (ацетилхолин) – расширяющее;

  2. биологически активные вещества – гистамин расширяет сосуды, а серотонин суживает;

  3. кинины – брадикинин, калидин – оказывают расширяющее действие;

  4. простогландины А1, А2, Е1 расширяют сосуды, а F2α суживает.

Роль сосудодвигательного центра в регуляции сосудистого тонуса.

В нервной регуляции тонуса сосудов принимают участие спинной, продолговатый, средний и промежуточный мозг, кора головного мозга. КГМ и гипоталамическая область оказывают опосредованное влияние на тонус сосудов, изменяя возбудимость нейронов продолговатого и спинного мозга.

В продолговатом мозге локализуется сосудодвигательный центр, который состоит из двух областей – прессорной и депрессорной. Возбуждение нейронов прессорной области приводит к повышению тонуса сосудов и уменьшению их просвета, возбуждение нейронов депрессорной зоны обусловливает понижение тонуса сосудов и увеличение их просвета.

Тонус сосудодвигательного центра зависит от нервных импульсов, постоянно идущих к нему от рецепторов рефлексогенных зон. Особенно важная роль принадлежит аортальной и каротидной рефлексогенным зонам.

Рецепторная зона дуги аорты представлена чувствительными нервными окончаниями депрессорного нерва, являющегося веточкой блуждающего нерва. В области сонных синусов располагаются механорецепторы, связанные с языкоглоточным (IX пара ЧМН) и симпатическими нервами. Естественным раздражителем их является механическое растяжение, которое наблюдается при изменении величины артериального давления.

При повышении артериального давления в сосудистой системе возбуждаются механорецепторы. Нервные импульсы от рецепторов по депрессорному нерву и блуждающим нервам направляются в продолговатый мозг к сосудодвигательному центру. Под влиянием этих импульсов снижается активность нейронов прессорной зоны сосудодвигательного центра, что приводит к увеличению просвета сосудов и снижению АД. При уменьшении АД наблюдаются противоположные изменения активности нейронов сосудодвигательного центра, приводящие к нормализации АД.

В восходящей части аорты, в ее наружном слое, располагается аортальное тельце, а в области разветвления сонной артерии – каротидное тельце, в которых локализованы хеморецепторы, чувствительные к изменениям химического состава крови, особенно к сдвигам содержания углекислого газа и кислорода.

Сужение и расширение сосудов в организме имеют различное функциональное назначение. Сужение сосудов обеспечивает перераспределение крови в интересах целого организма, в интересах жизненно важных органов, когда, например, в экстремальных условиях отмечается несоответствие между объемом циркулирующей крови и емкостью сосудистого русла. Расширение сосудов обеспечивает приспособление кровоснабжения к деятельности того или иного органа или ткани.

Перераспределение крови.

Перераспределение крови в сосудистом русле приводит к усилению кровоснабжения одних органов и уменьшению других. Перераспределение крови происходит в основном между сосудами мышечной системы и внутренних органов, особенно органов брюшной полости и кожи. Во время физической работы возросшее количество крови в сосудах скелетных мышц обеспечивает их эффективную работу. Одновременно уменьшается кровоснабжение органов системы пищеварения.

Во время процесса пищеварения расширяются сосуды органов системы пищеварения, кровоснабжение их увеличивается, что создает оптимальные условия для осуществления физической и химической обработки содержимого желудочно-кишечного тракта. В этот период суживаются сосуды скелетных мышц и уменьшается их кровоснабжение.

Физиология микроциркуляции.

Нормальному течению обмена веществ способствуют процессы микроциркуляции – направленного движения жидких сред организма: крови, лимфы, тканевой и цереброспинальной жидкостей и секретов эндокринных желез. Совокупность структур, обеспечивающих это движение, называется микроциркуляторным руслом. Основными структурно-функциональными единицами микроциркуляторного русла являются кровеносные и лимфатические капилляры, которые вместе с окружающими их тканями формируют три звена микроциркуляторного русла: капиллярное кровообращение, лимфообращение и тканевый транспорт.

Стенка капилляра прекрасно приспособлена для выполнения обменных функций. В большинстве случаев она состоит из одного слоя эндотелиальных клеток, между которыми имеются узкие щели.

Процессы обмена в капиллярах обеспечивают два основные механизма: диффузия и фильтрация. Двигательная сила диффузии – градиент концентрации ионов и движение растворителя вслед за ионами. Процесс диффузии в кровеносных капиллярах настолько активный, что при прохождении крови по капилляру вода плазмы успевает до 40 раз обменяться с жидкостью межклеточного пространства. В состоянии физиологического покоя через стенки всех капилляров за 1 мин проходит до 60 л воды. Конечно, сколько воды выходит из крови, столько же ее возвращается назад.

Кровеносные капилляры и прилежащие к ним клетки являются структурными элементами гистогематических барьеров между кровью и окружающими тканями всех без исключения внутренних органов. Эти барьеры регулируют поступление из крови в ткани питательных, пластических и биологически активных веществ, осуществляют отток продуктов клеточного метаболизма, способствуя, таким образом, сохранению органного и клеточного гомеостаза, и, наконец, препятствуют поступлению из крови в ткани чужеродных и ядовитых веществ, токсинов, микроорганизмов, некоторых лекарственных веществ.

Транскапиллярный обмен. Важнейшей функцией гистогематических барьеров является транскапиллярный обмен. Движение жидкости через стенку капилляра происходит за счет разности гидростатического давления крови и гидростатического давления окружающих тканей, а также под действием разности величины осмо-онкотического давления крови и межклеточной жидкости.

Тканевый транспорт. Стенка капилляра морфологически и функционально тесно связана с окружающей ее рыхлой соединительной тканью. Последняя переносит поступающую из просвета капилляра жидкость с растворенными в ней веществами и кислород к остальным тканевым структурам.

Лимфа и лимфообращение.

Лимфатическая система состоит из капилляров, сосудов, лимфатических узлов, грудного и правого лимфатического протоков, из которых лимфа поступает в венозную систему. Лимфатические сосуды – это дренажная система, по которой тканевая жидкость оттекает в кровеносное русло.

У взрослого человека в условиях относительного покоя из грудного протока в подключичную вену ежеминутно поступает около 1 мл лимфы, в сутки – от 1,2 до 1,6 л.

Лимфа – это жидкость, содержащаяся в лимфатических узлах и сосудах. Скорость движения лимфы по лимфатическим сосудам составляет 0,4-0,5 м/с.

По химическому составу лимфа и плазма крови очень близки. Основное отличие - в лимфе содержится значительно меньше белка, чем в плазме крови.

Источник лимфы - тканевая жидкость. Тканевая жидкость образуется из крови в капиллярах. Она заполняет межклеточные пространства всех тканей. Тканевая жидкость является промежуточной средой между кровью и клетками организма. Через тканевую жидкость клетки получают все необходимые для их жизнедеятельности питательные вещества и кислород и в нее же выделяют продукты обмена веществ, в том числе и углекислый газ.

Постоянный ток лимфы обеспечивается непрерывным образованием тканевой жидкости и переходом ее из межтканевых пространств в лимфатические сосуды.

Существенное значение для движения лимфы имеет активность органов и сократительная способность лимфатических сосудов. В лимфатических сосудах имеются мышечные элементы, благодаря чему они обладают способностью активно сокращаться. Наличие клапанов в лимфатических капиллярах обеспечивает движение лимфы в одном направлении (к грудному и правому лимфатическому протокам).

К вспомогательным факторам, способствующим движению лимфы, относятся: сократительная деятельность поперечнополосатых и гладких мышц, отрицательное давление в крупных венах и грудной полости, увеличение объема грудной клетки при вдохе, что обусловливает присасывание лимфы из лимфатических сосудов.

Основными функциями лимфатических капилляров являются дренажная, всасывания, транспортно-элиминативная, защитная и фагоцитоз.

Дренажная функция осуществляется по отношению к фильтрату плазмы с растворенными в нем коллоидами, кристаллоидами и метаболитами. Всасывание эмульсий жиров, белков и других коллоидов осуществляется в основном лимфатическими капиллярами ворсинок тонкого кишечника.

Транспортно-элиминативная – это перенос в лимфатические протоки лимфоцитов, микроорганизмов, а также выведение из тканей метаболитов, токсинов, обломков клеток, мелких инородных частиц.

Защитная функция лимфатической системы выполняется своеобразными биологическими и механическими фильтрами – лимфатическими узлами.

Фагоцитоз заключается в захвате бактерий и инородных частиц.

Лимфатические узлы. Лимфа в своем движении от капилляров к центральным сосудам и протокам проходит через лимфатические узлы. У взрослого человека имеется 500-1000 лимфатических узлов различных размеров – от булавочной головки до мелкого зерна фасоли.

Лимфатические узлы выполняют ряд важных функций: гемопоэтическую, иммунопоэтическую (в лимфоузлах образуются плазматические клетки, вырабатывающие антитела, там же находятся Т-и В-лимфоциты, отвечающие за иммунитет), защитно-фильтрационную, обменную и резервуарную. Лимфатическая система в целом обеспечивает отток лимфы от тканей и поступление ее в сосудистое русло.

Патологическая физиология кровообращения и микроциркуляции

Патология кровообращения

Кровообращение на участке периферического сосудистого русла (мелкие артерии, артериолы, метартериолы, капилляры, посткапиллярные венулы, артериоловенулярные анастомозы, венулы и мелкие вены), кроме движения крови, обеспечивает обмен воды, электролитов, газов, необходимых питательных веществ и метаболитов по системе кровь — ткань кровь.

Механизмы регуляции регионарного кровообращения включают, с одной стороны, влияние сосудосуживающей и сосудорасширяющей иннервации, с другой — воздействие на сосудистую стенку неспецифических метаболитов, неорганических ионов, местных биологически активных веществ и гормонов, приносимых с кровью. Считают, что с уменьшением диаметра сосудов значение нервной регуляции уменьшается, а метаболической, наоборот, возрастает.

В органе или тканях в ответ на функциональные и структурные изменения в них могут возникать местные нарушения кровообращения. Наиболее часто встречающиеся формы местного нарушения кровообращения: артериальная и венозная гиперемия, ишемия, стаз, тромбоз, эмболия.

Патология микроциркуляции

Нарушения микроциркуляции принадлежат к типовым патологическим процессам, лежащим в основе многих заболеваний и травм. Расстройства в системе микроциркуляции можно разделить на 3 большие группы: нарушения в стенках микрососудов, внутрисосудистые нарушения и комбинированные расстройства.

Патологические расстройства на уровне сосудистых стенок микрососудов выражаются в изменении формы и расположения эндотелиальных клеток. Одним из наиболее часто наблюдаемых нарушений этого типа является повышение проницаемости сосудистой стенки, которые также могут вызвать прилипание (адгезию) к их поверхности форменных элементов крови, опухолевых клеток, инородных частиц и др. Проникновение (диапедез) форменных элементов через стенки микрососудов имеет место после прилипания соответствующих клеток к эндотелию. Следствием нарушения целостности при повреждении стенки микрососудов являются микрокровоизлияния.

Внутрисосудистые нарушения микрогемоциркуляции крайне разнообразны. Среди них чаще всего встречаются изменения реологических свойств крови, связанные прежде всего с агрегацией (англ. agregate — соединение частей) эритроцитов и других форменных элементов крови. Такие внутрисосудистые расстройства, как замедление кровотока, тромбоз, эмболия, также в значительной степени зависят от нарушения реологических свойств крови. Следует отличать агрегацию форменных элементов крови от их агглютинации. Первый процесс характеризуется обратимостью, в то время как второй необратим. Крайняя степень выраженности агрегации форменных элементов крови получила название "сладж" (англ. sludge -тина, густая грязь, болото). Главным результатом таких изменений является увеличение вязкости крови вследствие слипания эритроцитов, лейкоцитов и тромбоцитов. Такое ее состояние в значительной степени ухудшает кровоснабжение тканей через микрососуды и снижает объем циркулирующей крови. В потоке крови при этом наступает разделение (сепарация) на клетки и плазму.

Ведущая роль в агрегации эритроцитов принадлежит факторам плазмы крови, в частности, высокомолекулярным белкам, таким, как глобулины и, особенно, фибриноген. Увеличение их содержания, что встречается нередко при злокачественных опухолях, усиливает агрегацию эритроцитов.

Так как гемостаз является защитной реакцией организма при любом нарушении целостности сосудистой стенки, такие расстройства реологических свойств крови встречаются при различных местных повреждениях. Последствием этих расстройств является замедление кровотока в микроциркуляторной системе вплоть до стаза (греч. stasis стояние), под которым понимается местная остановка в просвете сосудов того или иного органа, ткани их обычного содержимого. Стаз может быть вызван уменьшением разности давлений на протяжении микрососуда и (или) увеличением сопротивления в его просвете. В зависимости от причин, его вызвавших, различают ишемический, застойный и истинный капиллярный стаз. При ишемическом стазе градиент давления в микрососудах уменьшается вследствие значительного понижения давления в их артериальных отделах, что связано с прекращением притока крови из более крупных артерий (например, при тромбозе, эмболии, ангиоспазме и др.). Застойный стаз возникает при уменьшении градиента давления на протяжении микрососудов вследствие резкого повышения давления в их венозных отделах (например, при застое крови вследствие венозной гиперемии, тромбозе более крупных вен, сдавления их опухолью и др.). Истинный капиллярный стаз связан со значительным первичным увеличением сопротивления кровотоку в соответствующих сосудах. Причиной истинного капиллярного стаза является усиленная внутрисосудистая агрегация эритроцитов. Возникновению стаза может способствовать относительно высокая концентрация эритроцитов в крови, протекающей по капиллярам. На развитие и разрешение истинного капиллярного стаза влияют нервные и гуморальные механизмы. Нервная система воздействует на внутрисосудистую агрегацию с помощью биологически активных веществ.